IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34888-0.html
   My bibliography  Save this article

Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers

Author

Listed:
  • Jingni He

    (University of Calgary
    Xiangya Hospital, Central South University)

  • Wanqing Wen

    (Vanderbilt University School of Medicine)

  • Alicia Beeghly

    (Vanderbilt University School of Medicine)

  • Zhishan Chen

    (Vanderbilt University School of Medicine)

  • Chen Cao

    (University of Calgary)

  • Xiao-Ou Shu

    (Vanderbilt University School of Medicine)

  • Wei Zheng

    (Vanderbilt University School of Medicine)

  • Quan Long

    (University of Calgary
    University of Calgary
    University of Calgary
    University of Calgary)

  • Xingyi Guo

    (Vanderbilt University School of Medicine
    Vanderbilt University School of Medicine)

Abstract

Transcriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription factor occupied elements, we develop sTF-TWAS and demonstrate that it outperforms existing TWAS approaches in both simulation and real data analyses. Under the sTF-TWAS framework, we build genetic models to predict alternative splicing and gene expression in normal breast, prostate and lung tissues from the Genotype-Tissue Expression project and apply these models to data from large genome-wide association studies (GWAS) conducted among European-ancestry populations. At Bonferroni-corrected P

Suggested Citation

  • Jingni He & Wanqing Wen & Alicia Beeghly & Zhishan Chen & Chen Cao & Xiao-Ou Shu & Wei Zheng & Quan Long & Xingyi Guo, 2022. "Integrating transcription factor occupancy with transcriptome-wide association analysis identifies susceptibility genes in human cancers," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34888-0
    DOI: 10.1038/s41467-022-34888-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34888-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34888-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen Zhang & Georgios Voloudakis & Veera M. Rajagopal & Ben Readhead & Joel T. Dudley & Eric E. Schadt & Johan L. M. Björkegren & Yungil Kim & John F. Fullard & Gabriel E. Hoffman & Panos Roussos, 2019. "Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    2. Nicholas Mancuso & Simon Gayther & Alexander Gusev & Wei Zheng & Kathryn L. Penney & Zsofia Kote-Jarai & Rosalind Eeles & Matthew Freedman & Christopher Haiman & Bogdan Pasaniuc, 2018. "Large-scale transcriptome-wide association study identifies new prostate cancer risk regions," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Wanqing Wen & Zhishan Chen & Jiandong Bao & Quan Long & Xiao-ou Shu & Wei Zheng & Xingyi Guo, 2021. "Genetic variations of DNA bindings of FOXA1 and co-factors in breast cancer susceptibility," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Jian Yan & Yunjiang Qiu & André M. Ribeiro dos Santos & Yimeng Yin & Yang E. Li & Nick Vinckier & Naoki Nariai & Paola Benaglio & Anugraha Raman & Xiaoyu Li & Shicai Fan & Joshua Chiou & Fulin Chen & , 2021. "Systematic analysis of binding of transcription factors to noncoding variants," Nature, Nature, vol. 591(7848), pages 147-151, March.
    5. Chen Cao & Bowei Ding & Qing Li & Devin Kwok & Jingjing Wu & Quan Long, 2021. "Power analysis of transcriptome-wide association study: Implications for practical protocol choice," PLOS Genetics, Public Library of Science, vol. 17(2), pages 1-20, February.
    6. Anshul Kundaje & Wouter Meuleman & Jason Ernst & Misha Bilenky & Angela Yen & Alireza Heravi-Moussavi & Pouya Kheradpour & Zhizhuo Zhang & Jianrong Wang & Michael J. Ziller & Viren Amin & John W. Whit, 2015. "Integrative analysis of 111 reference human epigenomes," Nature, Nature, vol. 518(7539), pages 317-330, February.
    7. Tokhir Dadaev & Edward J. Saunders & Paul J. Newcombe & Ezequiel Anokian & Daniel A. Leongamornlert & Mark N. Brook & Clara Cieza-Borrella & Martina Mijuskovic & Sarah Wakerell & Ali Amin Al Olama & F, 2018. "Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants," Nature Communications, Nature, vol. 9(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arjun Bhattacharya & Anastasia N. Freedman & Vennela Avula & Rebeca Harris & Weifang Liu & Calvin Pan & Aldons J. Lusis & Robert M. Joseph & Lisa Smeester & Hadley J. Hartwell & Karl C. K. Kuban & Car, 2022. "Placental genomics mediates genetic associations with complex health traits and disease," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Qile Dai & Geyu Zhou & Hongyu Zhao & Urmo Võsa & Lude Franke & Alexis Battle & Alexander Teumer & Terho Lehtimäki & Olli T. Raitakari & Tõnu Esko & Michael P. Epstein & Jingjing Yang, 2023. "OTTERS: a powerful TWAS framework leveraging summary-level reference data," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Wendiao Zhang & Ming Zhang & Zhenhong Xu & Hongye Yan & Huimin Wang & Jiamei Jiang & Juan Wan & Beisha Tang & Chunyu Liu & Chao Chen & Qingtuan Meng, 2023. "Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Guanghao Qi & Surya B. Chhetri & Debashree Ray & Diptavo Dutta & Alexis Battle & Samsiddhi Bhattacharjee & Nilanjan Chatterjee, 2024. "Genome-wide large-scale multi-trait analysis characterizes global patterns of pleiotropy and unique trait-specific variants," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Pingting Ying & Can Chen & Zequn Lu & Shuoni Chen & Ming Zhang & Yimin Cai & Fuwei Zhang & Jinyu Huang & Linyun Fan & Caibo Ning & Yanmin Li & Wenzhuo Wang & Hui Geng & Yizhuo Liu & Wen Tian & Zhiyong, 2023. "Genome-wide enhancer-gene regulatory maps link causal variants to target genes underlying human cancer risk," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Palwende Romuald Boua & Jean-Tristan Brandenburg & Ananyo Choudhury & Hermann Sorgho & Engelbert A. Nonterah & Godfred Agongo & Gershim Asiki & Lisa Micklesfield & Solomon Choma & Francesc Xavier Góme, 2022. "Genetic associations with carotid intima-media thickness link to atherosclerosis with sex-specific effects in sub-Saharan Africans," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Pascal Schlosser & Adrienne Tin & Pamela R. Matias-Garcia & Chris H. L. Thio & Roby Joehanes & Hongbo Liu & Antoine Weihs & Zhi Yu & Anselm Hoppmann & Franziska Grundner-Culemann & Josine L. Min & Ade, 2021. "Meta-analyses identify DNA methylation associated with kidney function and damage," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    8. Milton Pividori & Sumei Lu & Binglan Li & Chun Su & Matthew E. Johnson & Wei-Qi Wei & Qiping Feng & Bahram Namjou & Krzysztof Kiryluk & Iftikhar J. Kullo & Yuan Luo & Blair D. Sullivan & Benjamin F. V, 2023. "Projecting genetic associations through gene expression patterns highlights disease etiology and drug mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Kosmidis, Kosmas & Hütt, Marc-Thorsten, 2023. "DNA visibility graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    10. Andrew D. Grotzinger & Travis T. Mallard & Zhaowen Liu & Jakob Seidlitz & Tian Ge & Jordan W. Smoller, 2023. "Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Andrew D. Grotzinger & Javier de la Fuente & Gail Davies & Michel G. Nivard & Elliot M. Tucker-Drob, 2022. "Transcriptome-wide and stratified genomic structural equation modeling identify neurobiological pathways shared across diverse cognitive traits," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Guanghao Qi & Benjamin J. Strober & Joshua M. Popp & Rebecca Keener & Hongkai Ji & Alexis Battle, 2023. "Single-cell allele-specific expression analysis reveals dynamic and cell-type-specific regulatory effects," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Jennifer P. Nguyen & Timothy D. Arthur & Kyohei Fujita & Bianca M. Salgado & Margaret K. R. Donovan & Hiroko Matsui & Ji Hyun Kim & Agnieszka D’Antonio-Chronowska & Matteo D’Antonio & Kelly A. Frazer, 2023. "eQTL mapping in fetal-like pancreatic progenitor cells reveals early developmental insights into diabetes risk," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    14. Lucia Trastulla & Georgii Dolgalev & Sylvain Moser & Laura T. Jiménez-Barrón & Till F. M. Andlauer & Moritz Scheidt & Monika Budde & Urs Heilbronner & Sergi Papiol & Alexander Teumer & Georg Homuth & , 2024. "Distinct genetic liability profiles define clinically relevant patient strata across common diseases," Nature Communications, Nature, vol. 15(1), pages 1-28, December.
    15. Lida Wang & Chachrit Khunsriraksakul & Havell Markus & Dieyi Chen & Fan Zhang & Fang Chen & Xiaowei Zhan & Laura Carrel & Dajiang. J. Liu & Bibo Jiang, 2024. "Integrating single cell expression quantitative trait loci summary statistics to understand complex trait risk genes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Caitlin E. Carey & Rebecca Shafee & Robbee Wedow & Amanda Elliott & Duncan S. Palmer & John Compitello & Masahiro Kanai & Liam Abbott & Patrick Schultz & Konrad J. Karczewski & Samuel C. Bryant & Caro, 2024. "Principled distillation of UK Biobank phenotype data reveals underlying structure in human variation," Nature Human Behaviour, Nature, vol. 8(8), pages 1599-1615, August.
    17. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    18. Tara N. Yankee & Sungryong Oh & Emma Wentworth Winchester & Andrea Wilderman & Kelsey Robinson & Tia Gordon & Jill A. Rosenfeld & Jennifer VanOudenhove & Daryl A. Scott & Elizabeth J. Leslie & Justin , 2023. "Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    19. Matthias Wielscher & Pooja R. Mandaviya & Brigitte Kuehnel & Roby Joehanes & Rima Mustafa & Oliver Robinson & Yan Zhang & Barbara Bodinier & Esther Walton & Pashupati P. Mishra & Pascal Schlosser & Ro, 2022. "DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Jin Woo Oh & Michael A. Beer, 2024. "Gapped-kmer sequence modeling robustly identifies regulatory vocabularies and distal enhancers conserved between evolutionarily distant mammals," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34888-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.