IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33715-w.html
   My bibliography  Save this article

Direct production of olefins from syngas with ultrahigh carbon efficiency

Author

Listed:
  • Hailing Yu

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Caiqi Wang

    (Chinese Academy of Sciences
    University of the Chinese Academy of Sciences)

  • Tiejun Lin

    (Chinese Academy of Sciences)

  • Yunlei An

    (Chinese Academy of Sciences)

  • Yuchen Wang

    (Chinese Academy of Sciences
    ShanghaiTech University)

  • Qingyu Chang

    (Chinese Academy of Sciences)

  • Fei Yu

    (Chinese Academy of Sciences)

  • Yao Wei

    (University of the Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Fanfei Sun

    (Chinese Academy of Sciences)

  • Zheng Jiang

    (Chinese Academy of Sciences)

  • Shenggang Li

    (Chinese Academy of Sciences
    ShanghaiTech University)

  • Yuhan Sun

    (Chinese Academy of Sciences
    ShanghaiTech University)

  • Liangshu Zhong

    (Chinese Academy of Sciences
    ShanghaiTech University)

Abstract

Syngas conversion serves as a competitive strategy to produce olefins chemicals from nonpetroleum resources. However, the goal to achieve desirable olefins selectivity with limited undesired C1 by-products remains a grand challenge. Herein, we present a non-classical Fischer-Tropsch to olefins process featuring high carbon efficiency that realizes 80.1% olefins selectivity with ultralow total selectivity of CH4 and CO2 (

Suggested Citation

  • Hailing Yu & Caiqi Wang & Tiejun Lin & Yunlei An & Yuchen Wang & Qingyu Chang & Fei Yu & Yao Wei & Fanfei Sun & Zheng Jiang & Shenggang Li & Yuhan Sun & Liangshu Zhong, 2022. "Direct production of olefins from syngas with ultrahigh carbon efficiency," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33715-w
    DOI: 10.1038/s41467-022-33715-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33715-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33715-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yaru Zhang & Xiaoli Yang & Xiaofeng Yang & Hongmin Duan & Haifeng Qi & Yang Su & Binglian Liang & Huabing Tao & Bin Liu & De Chen & Xiong Su & Yanqiang Huang & Tao Zhang, 2020. "Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    2. Jingxiu Xie & Pasi P. Paalanen & Tom W. van Deelen & Bert M. Weckhuysen & Manuel J. Louwerse & Krijn P. de Jong, 2019. "Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Jun Zhou & Zhe Gao & Guolei Xiang & Tianyu Zhai & Zikai Liu & Weixin Zhao & Xin Liang & Leyu Wang, 2022. "Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel A. Kots & Tianjun Xie & Brandon C. Vance & Caitlin M. Quinn & Matheus Dorneles Mello & J. Anibal Boscoboinik & Cong Wang & Pawan Kumar & Eric A. Stach & Nebojsa S. Marinkovic & Lu Ma & Steven N., 2022. "Electronic modulation of metal-support interactions improves polypropylene hydrogenolysis over ruthenium catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Zhaohua Wang & Chunyang Dong & Xuan Tang & Xuetao Qin & Xingwu Liu & Mi Peng & Yao Xu & Chuqiao Song & Jie Zhang & Xuan Liang & Sheng Dai & Ding Ma, 2022. "CO-tolerant RuNi/TiO2 catalyst for the storage and purification of crude hydrogen," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Jiaqi Zhao & Jinjia Liu & Zhenhua Li & Kaiwen Wang & Run Shi & Pu Wang & Qing Wang & Geoffrey I. N. Waterhouse & Xiaodong Wen & Tierui Zhang, 2023. "Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Xin Tang & Chuqiao Song & Haibo Li & Wenyu Liu & Xinyu Hu & Qiaoli Chen & Hanfeng Lu & Siyu Yao & Xiao-nian Li & Lili Lin, 2024. "Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Chuanhao Wang & Junjie Du & Lin Zeng & Zhongling Li & Yizhou Dai & Xu Li & Zijun Peng & Wenlong Wu & Hongliang Li & Jie Zeng, 2023. "Direct synthesis of extra-heavy olefins from carbon monoxide and water," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Jiban Podder & Biswa R. Patra & Falguni Pattnaik & Sonil Nanda & Ajay K. Dalai, 2023. "A Review of Carbon Capture and Valorization Technologies," Energies, MDPI, vol. 16(6), pages 1-29, March.
    8. Ming Xu & Xuetao Qin & Yao Xu & Xiaochen Zhang & Lirong Zheng & Jin-Xun Liu & Meng Wang & Xi Liu & Ding Ma, 2022. "Boosting CO hydrogenation towards C2+ hydrocarbons over interfacial TiO2−x/Ni catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33715-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.