IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33520-5.html
   My bibliography  Save this article

Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3

Author

Listed:
  • Shubhankar Das

    (Johannes Gutenberg University Mainz)

  • A. Ross

    (Thales, Université Paris-Saclay)

  • X. X. Ma

    (Shanghai University)

  • S. Becker

    (Johannes Gutenberg University Mainz)

  • C. Schmitt

    (Johannes Gutenberg University Mainz)

  • F. Duijn

    (CNRS, CEA, Grenoble INP, SPINTEC
    CNRS-UGA-UPS-INSA-EMFL)

  • E. F. Galindez-Ruales

    (Johannes Gutenberg University Mainz)

  • F. Fuhrmann

    (Johannes Gutenberg University Mainz)

  • M.-A. Syskaki

    (Johannes Gutenberg University Mainz)

  • U. Ebels

    (CNRS, CEA, Grenoble INP, SPINTEC)

  • V. Baltz

    (CNRS, CEA, Grenoble INP, SPINTEC)

  • A.-L. Barra

    (CNRS-UGA-UPS-INSA-EMFL)

  • H. Y. Chen

    (Shanghai University)

  • G. Jakob

    (Johannes Gutenberg University Mainz
    Graduate School of Excellence Materials Science in Mainz)

  • S. X. Cao

    (Shanghai University)

  • J. Sinova

    (Johannes Gutenberg University Mainz)

  • O. Gomonay

    (Johannes Gutenberg University Mainz)

  • R. Lebrun

    (Thales, Université Paris-Saclay)

  • M. Kläui

    (Johannes Gutenberg University Mainz
    Graduate School of Excellence Materials Science in Mainz
    Norwegian University of Science and Technology)

Abstract

In antiferromagnets, the efficient transport of spin-waves has until now only been observed in the insulating antiferromagnet hematite, where circularly (or a superposition of pairs of linearly) polarized spin-waves diffuse over long distances. Here, we report long-distance spin-transport in the antiferromagnetic orthoferrite YFeO3, where a different transport mechanism is enabled by the combined presence of the Dzyaloshinskii-Moriya interaction and externally applied fields. The magnon decay length is shown to exceed hundreds of nanometers, in line with resonance measurements that highlight the low magnetic damping. We observe a strong anisotropy in the magnon decay lengths that we can attribute to the role of the magnon group velocity in the transport of spin-waves in antiferromagnets. This unique mode of transport identified in YFeO3 opens up the possibility of a large and technologically relevant class of materials, i.e., canted antiferromagnets, for long-distance spin transport.

Suggested Citation

  • Shubhankar Das & A. Ross & X. X. Ma & S. Becker & C. Schmitt & F. Duijn & E. F. Galindez-Ruales & F. Fuhrmann & M.-A. Syskaki & U. Ebels & V. Baltz & A.-L. Barra & H. Y. Chen & G. Jakob & S. X. Cao & , 2022. "Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33520-5
    DOI: 10.1038/s41467-022-33520-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33520-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33520-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. Lebrun & A. Ross & S. A. Bender & A. Qaiumzadeh & L. Baldrati & J. Cramer & A. Brataas & R. A. Duine & M. Kläui, 2018. "Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide," Nature, Nature, vol. 561(7722), pages 222-225, September.
    2. Shuai Ning & Abinash Kumar & Konstantin Klyukin & Eunsoo Cho & Jong Heon Kim & Tingyu Su & Hyun-Suk Kim & James M. LeBeau & Bilge Yildiz & Caroline A. Ross, 2021. "An antisite defect mechanism for room temperature ferroelectricity in orthoferrites," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    3. R. Lebrun & A. Ross & O. Gomonay & V. Baltz & U. Ebels & A.-L. Barra & A. Qaiumzadeh & A. Brataas & J. Sinova & M. Kläui, 2020. "Long-distance spin-transport across the Morin phase transition up to room temperature in ultra-low damping single crystals of the antiferromagnet α-Fe2O3," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byung Cheol Park & Howon Lee & Sang Hyup Oh & Hyun Jun Shin & Young Jai Choi & Taewoo Ha, 2024. "Re-order parameter of interacting thermodynamic magnets," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongjian Zhou & Liyang Liao & Tingwen Guo & Hua Bai & Mingkun Zhao & Caihua Wan & Lin Huang & Lei Han & Leilei Qiao & Yunfeng You & Chong Chen & Ruyi Chen & Zhiyuan Zhou & Xiufeng Han & Feng Pan & Che, 2022. "Orthogonal interlayer coupling in an all-antiferromagnetic junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Shannon C. Haley & Eran Maniv & Shan Wu & Tessa Cookmeyer & Susana Torres-Londono & Meera Aravinth & Nikola Maksimovic & Joel Moore & Robert J. Birgeneau & James G. Analytis, 2023. "Long-range, non-local switching of spin textures in a frustrated antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    3. Farhan Nur Kholid & Dominik Hamara & Ahmad Faisal Bin Hamdan & Guillermo Nava Antonio & Richard Bowen & Dorothée Petit & Russell Cowburn & Roman V. Pisarev & Davide Bossini & Joseph Barker & Chiara Ci, 2023. "The importance of the interface for picosecond spin pumping in antiferromagnet-heavy metal heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Shingo Kaneta-Takada & Miho Kitamura & Shoma Arai & Takuma Arai & Ryo Okano & Le Duc Anh & Tatsuro Endo & Koji Horiba & Hiroshi Kumigashira & Masaki Kobayashi & Munetoshi Seki & Hitoshi Tabata & Masaa, 2022. "Giant spin-to-charge conversion at an all-epitaxial single-crystal-oxide Rashba interface with a strongly correlated metal interlayer," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Freddie Hendriks & Rafael R. Rojas-Lopez & Bert Koopmans & Marcos H. D. Guimarães, 2024. "Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. E. Rongione & O. Gueckstock & M. Mattern & O. Gomonay & H. Meer & C. Schmitt & R. Ramos & T. Kikkawa & M. Mičica & E. Saitoh & J. Sinova & H. Jaffrès & J. Mangeney & S. T. B. Goennenwein & S. Geprägs , 2023. "Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin–phonon interactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Dongsheng Yang & Taeheon Kim & Kyusup Lee & Chang Xu & Yakun Liu & Fei Wang & Shishun Zhao & Dushyant Kumar & Hyunsoo Yang, 2024. "Spin-orbit torque manipulation of sub-terahertz magnons in antiferromagnetic α-Fe2O3," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Ruofan Li & Lauren J. Riddiford & Yahong Chai & Minyi Dai & Hai Zhong & Bo Li & Peng Li & Di Yi & Yuejie Zhang & David A. Broadway & Adrien E. E. Dubois & Patrick Maletinsky & Jiamian Hu & Yuri Suzuki, 2023. "A puzzling insensitivity of magnon spin diffusion to the presence of 180-degree domain walls," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    9. Leixin Miao & Kishwar-E Hasin & Parivash Moradifar & Debangshu Mukherjee & Ke Wang & Sang-Wook Cheong & Elizabeth A. Nowadnick & Nasim Alem, 2022. "Double-Bilayer polar nanoregions and Mn antisites in (Ca, Sr)3Mn2O7," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33520-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.