IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55237-3.html
   My bibliography  Save this article

Transition from the topological to the chaotic in the nonlinear Su–Schrieffer–Heeger model

Author

Listed:
  • Kazuki Sone

    (University of Tsukuba
    The University of Tokyo)

  • Motohiko Ezawa

    (The University of Tokyo)

  • Zongping Gong

    (The University of Tokyo)

  • Taro Sawada

    (The University of Tokyo)

  • Nobuyuki Yoshioka

    (The University of Tokyo
    RIKEN Cluster for Pioneering Research (CPR)
    Japan Science and Technology Agency (JST), PRESTO)

  • Takahiro Sagawa

    (The University of Tokyo
    The University of Tokyo)

Abstract

Recent studies on topological materials are expanding into the nonlinear regime, while the central principle, namely the bulk–edge correspondence, is yet to be elucidated in the strongly nonlinear regime. Here, we reveal that nonlinear topological edge modes can exhibit the transition to spatial chaos by increasing nonlinearity, which can be a universal mechanism of the breakdown of the bulk–edge correspondence. Specifically, we unveil the underlying dynamical system describing the spatial distribution of zero modes and show the emergence of chaos. We also propose the correspondence between the absolute value of the topological invariant and the dimension of the stable manifold under sufficiently weak nonlinearity. Our results provide a general guiding principle to investigate the nonlinear bulk–edge correspondence that can potentially be extended to arbitrary dimensions.

Suggested Citation

  • Kazuki Sone & Motohiko Ezawa & Zongping Gong & Taro Sawada & Nobuyuki Yoshioka & Takahiro Sagawa, 2025. "Transition from the topological to the chaotic in the nonlinear Su–Schrieffer–Heeger model," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55237-3
    DOI: 10.1038/s41467-024-55237-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55237-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55237-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marius Jürgensen & Sebabrata Mukherjee & Mikael C. Rechtsman, 2021. "Quantized nonlinear Thouless pumping," Nature, Nature, vol. 596(7870), pages 63-67, August.
    2. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Di Zhou & D. Zeb Rocklin & Michael Leamy & Yugui Yao, 2022. "Topological invariant and anomalous edge modes of strongly nonlinear systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. You Wang & Li-Jun Lang & Ching Hua Lee & Baile Zhang & Y. D. Chong, 2019. "Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    5. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Publisher Correction: Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyed Danial Hashemi & Sunil Mittal, 2024. "Floquet topological dissipative Kerr solitons and incommensurate frequency combs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yu Liu & Yu-Ran Zhang & Yun-Hao Shi & Tao Liu & Congwei Lu & Yong-Yi Wang & Hao Li & Tian-Ming Li & Cheng-Lin Deng & Si-Yun Zhou & Tong Liu & Jia-Chi Zhang & Gui-Han Liang & Zheng-Yang Mei & Wei-Guo M, 2025. "Interplay between disorder and topology in Thouless pumping on a superconducting quantum processor," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    3. Jing Yang & Yuanzhen Li & Yumeng Yang & Xinrong Xie & Zijian Zhang & Jiale Yuan & Han Cai & Da-Wei Wang & Fei Gao, 2024. "Realization of all-band-flat photonic lattices," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    4. Stéphane Coen & Bruno Garbin & Gang Xu & Liam Quinn & Nathan Goldman & Gian-Luca Oppo & Miro Erkintalo & Stuart G. Murdoch & Julien Fatome, 2024. "Nonlinear topological symmetry protection in a dissipative system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Weixuan Zhang & Wenhui Cao & Long Qian & Hao Yuan & Xiangdong Zhang, 2025. "Topolectrical space-time circuits," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Yi-Ke Sun & Zhong-Lei Shan & Zhen-Nan Tian & Qi-Dai Chen & Xu-Lin Zhang, 2024. "Two-dimensional non-Abelian Thouless pump," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55237-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.