IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44640-x.html
   My bibliography  Save this article

Nonlinear topological symmetry protection in a dissipative system

Author

Listed:
  • Stéphane Coen

    (The University of Auckland
    The Dodd-Walls Centre for Photonic and Quantum Technologies)

  • Bruno Garbin

    (The University of Auckland
    The Dodd-Walls Centre for Photonic and Quantum Technologies
    NcodiN SAS)

  • Gang Xu

    (The University of Auckland
    The Dodd-Walls Centre for Photonic and Quantum Technologies
    Huazhong University of Science and Technology)

  • Liam Quinn

    (The University of Auckland
    The Dodd-Walls Centre for Photonic and Quantum Technologies)

  • Nathan Goldman

    (Université Libre de Bruxelles
    Collège de France, CNRS, ENS-Université PSL)

  • Gian-Luca Oppo

    (University of Strathclyde)

  • Miro Erkintalo

    (The University of Auckland
    The Dodd-Walls Centre for Photonic and Quantum Technologies)

  • Stuart G. Murdoch

    (The University of Auckland
    The Dodd-Walls Centre for Photonic and Quantum Technologies)

  • Julien Fatome

    (The University of Auckland
    The Dodd-Walls Centre for Photonic and Quantum Technologies
    Université de Bourgogne)

Abstract

We investigate experimentally and theoretically a system ruled by an intricate interplay between topology, nonlinearity, and spontaneous symmetry breaking. The experiment is based on a two-mode coherently-driven optical resonator where photons interact through the Kerr nonlinearity. In presence of a phase defect, the modal structure acquires a synthetic Möbius topology enabling the realization of spontaneous symmetry breaking in inherently bias-free conditions without fine tuning of parameters. Rigorous statistical tests confirm the robustness of the underlying symmetry protection, which manifests itself by a periodic alternation of the modes reminiscent of period-doubling. This dynamic also confers long term stability to various localized structures including domain walls, solitons, and breathers. Our findings are supported by an effective Hamiltonian model and have relevance to other systems of interacting bosons and to the Floquet engineering of quantum matter. They could also be beneficial to the implementation of coherent Ising machines.

Suggested Citation

  • Stéphane Coen & Bruno Garbin & Gang Xu & Liam Quinn & Nathan Goldman & Gian-Luca Oppo & Miro Erkintalo & Stuart G. Murdoch & Julien Fatome, 2024. "Nonlinear topological symmetry protection in a dissipative system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44640-x
    DOI: 10.1038/s41467-023-44640-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44640-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44640-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. Moroney & L. Del Bino & S. Zhang & M. T. M. Woodley & L. Hill & T. Wildi & V. J. Wittwer & T. Südmeyer & G.-L. Oppo & M. R. Vanner & V. Brasch & T. Herr & P. Del’Haye, 2022. "A Kerr polarization controller," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Wenle Weng & Romain Bouchand & Erwan Lucas & Ewelina Obrzud & Tobias Herr & Tobias J. Kippenberg, 2020. "Heteronuclear soliton molecules in optical microresonators," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Marius Jürgensen & Sebabrata Mukherjee & Mikael C. Rechtsman, 2021. "Quantized nonlinear Thouless pumping," Nature, Nature, vol. 596(7870), pages 63-67, August.
    4. Gang Xu & Alexander U. Nielsen & Bruno Garbin & Lewis Hill & Gian-Luca Oppo & Julien Fatome & Stuart G. Murdoch & Stéphane Coen & Miro Erkintalo, 2021. "Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Stephane Barland & Jorge R. Tredicce & Massimo Brambilla & Luigi A. Lugiato & Salvador Balle & Massimo Giudici & Tommaso Maggipinto & Lorenzo Spinelli & Giovanna Tissoni & Thomas Knödl & Michael Mille, 2002. "Cavity solitons as pixels in semiconductor microcavities," Nature, Nature, vol. 419(6908), pages 699-702, October.
    6. Jae K. Jang & Miro Erkintalo & Stéphane Coen & Stuart G. Murdoch, 2015. "Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menghua Zhang & Shulin Ding & Xinxin Li & Keren Pu & Shujian Lei & Min Xiao & Xiaoshun Jiang, 2024. "Strong interactions between solitons and background light in Brillouin-Kerr microcombs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. J. M. Chavez Boggio & D. Bodenmüller & S. Ahmed & S. Wabnitz & D. Modotto & T. Hansson, 2022. "Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Aziz, Farah & Asif, Ali & Bint-e-Munir, Fatima, 2020. "Analytical modeling of electrical solitons in a nonlinear transmission line using Schamel–Korteweg deVries equation," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Bashir, Azhar & Seadawy, Aly R. & Ahmed, Sarfaraz & Rizvi, Syed T.R., 2022. "The Weierstrass and Jacobi elliptic solutions along with multiwave, homoclinic breather, kink-periodic-cross rational and other solitary wave solutions to Fornberg Whitham equation," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Kheradmand, R. & Lugiato, L.A. & Tissoni, G. & Brambilla, M. & Tajalli, H., 2005. "Cavity soliton mobility in semiconductor microresonators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(3), pages 346-355.
    6. Łukasz A. Sterczewski & Jarosław Sotor, 2023. "Two-photon imaging of soliton dynamics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Aksoy, Abdullah & Yigit, Enes, 2023. "Automatic soliton wave recognition using deep learning algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Su-Peng Yu & Erwan Lucas & Jizhao Zang & Scott B. Papp, 2022. "A continuum of bright and dark-pulse states in a photonic-crystal resonator," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Nagi, Jaspreet Kaur & Jana, Soumendu, 2022. "Broadband cavity soliton with graphene saturable absorber," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Seadawy, Aly R. & Rizvi, Syed T.R. & Ahmed, Sarfaraz, 2022. "Multiple lump, generalized breathers, Akhmediev breather, manifold periodic and rogue wave solutions for generalized Fitzhugh-Nagumo equation: Applications in nuclear reactor theory," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    11. Pawel S. Jung & Georgios G. Pyrialakos & Fan O. Wu & Midya Parto & Mercedeh Khajavikhan & Wieslaw Krolikowski & Demetrios N. Christodoulides, 2022. "Thermal control of the topological edge flow in nonlinear photonic lattices," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Kheradmand, Reza & Aghdami, Keivan M. & Talouneh, Kamel, 2016. "The switching of dark and bright soliton in 1D discrete cavity laser," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 511-515.
    13. Tlidi, M. & Gopalakrishnan, S.S. & Taki, M. & Panajotov, K., 2021. "Optical crystals and light-bullets in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    14. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Hossein Taheri & Andrey B. Matsko & Lute Maleki & Krzysztof Sacha, 2022. "All-optical dissipative discrete time crystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44640-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.