IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33091-5.html
   My bibliography  Save this article

Independent origin of large labyrinth size in turtles

Author

Listed:
  • Serjoscha W. Evers

    (University of Fribourg
    University of Oxford)

  • Walter G. Joyce

    (University of Fribourg)

  • Jonah N. Choiniere

    (University of the Witwatersrand)

  • Gabriel S. Ferreira

    (Senckenberg Centre for Human Evolution and Paleoenvironment an der Universität Tübingen
    Universität Tübingen)

  • Christian Foth

    (University of Fribourg)

  • Guilherme Hermanson

    (University of Fribourg
    Universidade de São Paulo)

  • Hongyu Yi

    (Chinese Academy of Sciences Beijing
    CAS Center for Excellence in Life and Paleoenvironment Beijing)

  • Catherine M. Johnson

    (University of Oxford)

  • Ingmar Werneburg

    (Senckenberg Centre for Human Evolution and Paleoenvironment an der Universität Tübingen
    Universität Tübingen)

  • Roger B. J. Benson

    (University of Oxford
    University of the Witwatersrand)

Abstract

The labyrinth of the vertebrate inner ear is a sensory system that governs the perception of head rotations. Central hypotheses predict that labyrinth shape and size are related to ecological adaptations, but this is under debate and has rarely been tested outside of mammals. We analyze the evolution of labyrinth morphology and its ecological drivers in living and fossil turtles, an understudied group that underwent multiple locomotory transitions during 230 million years of evolution. We show that turtles have unexpectedly large labyrinths that evolved during the origin of aquatic habits. Turtle labyrinths are relatively larger than those of mammals, and comparable to many birds, undermining the hypothesis that labyrinth size correlates directly with agility across vertebrates. We also find that labyrinth shape variation does not correlate with ecology in turtles, undermining the widespread expectation that reptilian labyrinth shapes convey behavioral signal, and demonstrating the importance of understudied groups, like turtles.

Suggested Citation

  • Serjoscha W. Evers & Walter G. Joyce & Jonah N. Choiniere & Gabriel S. Ferreira & Christian Foth & Guilherme Hermanson & Hongyu Yi & Catherine M. Johnson & Ingmar Werneburg & Roger B. J. Benson, 2022. "Independent origin of large labyrinth size in turtles," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33091-5
    DOI: 10.1038/s41467-022-33091-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33091-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33091-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. F. Spoor & S. Bajpai & S. T. Hussain & K. Kumar & J. G. M. Thewissen, 2002. "Vestibular evidence for the evolution of aquatic behaviour in early cetaceans," Nature, Nature, vol. 417(6885), pages 163-166, May.
    2. J. Gower, 1975. "Generalized procrustes analysis," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 33-51, March.
    3. Mark Pagel, 1999. "Inferring the historical patterns of biological evolution," Nature, Nature, vol. 401(6756), pages 877-884, October.
    4. Dean C Adams & Ryan N Felice, 2014. "Assessing Trait Covariation and Morphological Integration on Phylogenies Using Evolutionary Covariance Matrices," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicole D. S. Grunstra & Fabian Hollinetz & Guillermo Bravo Morante & Frank E. Zachos & Cathrin Pfaff & Viola Winkler & Philipp Mitteroecker & Anne Maître, 2024. "Convergent evolution in Afrotheria and non-afrotherians demonstrates high evolvability of the mammalian inner ear," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicole D. S. Grunstra & Fabian Hollinetz & Guillermo Bravo Morante & Frank E. Zachos & Cathrin Pfaff & Viola Winkler & Philipp Mitteroecker & Anne Maître, 2024. "Convergent evolution in Afrotheria and non-afrotherians demonstrates high evolvability of the mammalian inner ear," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Rodrigo S Rios & Cristian Salgado-Luarte & Ernesto Gianoli, 2014. "Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    3. Meyners, Michael & Qannari, El Mostafa, 2001. "Relating principal component analysis on merged data sets to a regression approach," Technical Reports 2001,47, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    5. Aris Katzourakis & Gkikas Magiorkinis & Aaron G Lim & Sunetra Gupta & Robert Belshaw & Robert Gifford, 2014. "Larger Mammalian Body Size Leads to Lower Retroviral Activity," PLOS Pathogens, Public Library of Science, vol. 10(7), pages 1-11, July.
    6. Jonas Eberle & Renier Myburgh & Dirk Ahrens, 2014. "The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-16, May.
    7. Tong Qiu & Robert Andrus & Marie-Claire Aravena & Davide Ascoli & Yves Bergeron & Roberta Berretti & Daniel Berveiller & Michal Bogdziewicz & Thomas Boivin & Raul Bonal & Don C. Bragg & Thomas Caignar, 2022. "Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Barbara McGillivray & Gard B. Jenset & Khalid Salama & Donna Schut, 2022. "Investigating patterns of change, stability, and interaction among scientific disciplines using embeddings," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    9. Wei Wang & Stephen J Lycett & Noreen von Cramon-Taubadel & Jennie J H Jin & Christopher J Bae, 2012. "Comparison of Handaxes from Bose Basin (China) and the Western Acheulean Indicates Convergence of Form, Not Cognitive Differences," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-7, April.
    10. Lisa Sakamoto & Hiromi Kajiya-Kanegae & Koji Noshita & Hideki Takanashi & Masaaki Kobayashi & Toru Kudo & Kentaro Yano & Tsuyoshi Tokunaga & Nobuhiro Tsutsumi & Hiroyoshi Iwata, 2019. "Comparison of shape quantification methods for genomic prediction, and genome-wide association study of sorghum seed morphology," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    11. Mardia, Kanti V. & Wiechers, Henrik & Eltzner, Benjamin & Huckemann, Stephan F., 2022. "Principal component analysis and clustering on manifolds," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Mark C Mainwaring & Jenő Nagy & Mark E Hauber, 2021. "Sex-specific contributions to nest building in birds," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1075-1085.
    13. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    14. Nathan G Swenson, 2011. "Phylogenetic Beta Diversity Metrics, Trait Evolution and Inferring the Functional Beta Diversity of Communities," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-9, June.
    15. John Gower & Garmt Dijksterhuis, 1994. "Multivariate analysis of coffee images: A study in the simultaneous display of multivariate quantitative and qualitative variables for several assessors," Quality & Quantity: International Journal of Methodology, Springer, vol. 28(2), pages 165-184, May.
    16. Thomas A Püschel & Martin Friess & Germán Manríquez, 2020. "Morphological consequences of artificial cranial deformation: Modularity and integration," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-26, January.
    17. Modroño Herrán, Juan Ignacio & Fernández Aguirre, María Carmen & Landaluce Calvo, M. Isabel, 2003. "Una propuesta para el análisis de tablas múltiples," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    18. Fabien Lafuma & Ian J. Corfe & Julien Clavel & Nicolas Di-Poï, 2021. "Multiple evolutionary origins and losses of tooth complexity in squamates," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    19. Peter Verboon & Willem Heiser, 1992. "Resistant orthogonal procrustes analysis," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 237-256, December.
    20. Annie Bissonnette & Mathias Franz & Oliver Schülke & Julia Ostner, 2014. "Socioecology, but not cognition, predicts male coalitions across primates," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 794-801.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33091-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.