Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-20961-7
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shikai Liu & Yuheng Li & Di Wang & Shibo Xi & Haoming Xu & Yulin Wang & Xinzhe Li & Wenjie Zang & Weidong Liu & Mengyao Su & Katherine Yan & Adam C. Nielander & Andrew B. Wong & Jiong Lu & Thomas F. J, 2024. "Alkali cation-induced cathodic corrosion in Cu electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Zishan Han & Daliang Han & Zhe Chen & Jiachen Gao & Guangyi Jiang & Xinyu Wang & Shuaishuai Lyu & Yong Guo & Chuannan Geng & Lichang Yin & Zhe Weng & Quan-Hong Yang, 2022. "Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Philipp Hauke & Thomas Merzdorf & Malte Klingenhof & Peter Strasser, 2023. "Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived Cu-bimetallics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Yinchao Yao & Tong Shi & Wenxing Chen & Jiehua Wu & Yunying Fan & Yichun Liu & Liang Cao & Zhuo Chen, 2024. "A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Baiyu Yang & Ling Chen & Songlin Xue & Hao Sun & Kun Feng & Yufeng Chen & Xiang Zhang & Long Xiao & Yongze Qin & Jun Zhong & Zhao Deng & Yan Jiao & Yang Peng, 2022. "Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Yajun Zheng & Hedan Yao & Ruinan Di & Zhicheng Xiang & Qiang Wang & Fangfang Lu & Yu Li & Guangxing Yang & Qiang Ma & Zhiping Zhang, 2022. "Water coordinated on Cu(I)-based catalysts is the oxygen source in CO2 reduction to CO," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Jing Xue & Xue Dong & Chunxiao Liu & Jiawei Li & Yizhou Dai & Weiqing Xue & Laihao Luo & Yuan Ji & Xiao Zhang & Xu Li & Qiu Jiang & Tingting Zheng & Jianping Xiao & Chuan Xia, 2024. "Turning copper into an efficient and stable CO evolution catalyst beyond noble metals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Ahmed M. Abdellah & Fatma Ismail & Oliver W. Siig & Jie Yang & Carmen M. Andrei & Liza-Anastasia DiCecco & Amirhossein Rakhsha & Kholoud E. Salem & Kathryn Grandfield & Nabil Bassim & Robert Black & G, 2024. "Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffraction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Yue, Pengtao & Kang, Zhongyin & Fu, Qian & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion," Applied Energy, Elsevier, vol. 304(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-20961-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.