IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32318-9.html
   My bibliography  Save this article

Disease-associated mutations within the yeast DNAJB6 homolog Sis1 slow conformer-specific substrate processing and can be corrected by the modulation of nucleotide exchange factors

Author

Listed:
  • Ankan K. Bhadra

    (Washington University School of Medicine)

  • Michael J. Rau

    (Washington University Center for Cellular Imaging (WUCCI), Washington University School of Medicine)

  • Jil A. Daw

    (Washington University School of Medicine)

  • James A. J. Fitzpatrick

    (Washington University School of Medicine
    Washington University Center for Cellular Imaging (WUCCI), Washington University School of Medicine
    Washington University School of Medicine)

  • Conrad C. Weihl

    (Washington University School of Medicine)

  • Heather L. True

    (Washington University School of Medicine)

Abstract

Molecular chaperones, or heat shock proteins (HSPs), protect against the toxic misfolding and aggregation of proteins. As such, mutations or deficiencies within the chaperone network can lead to disease. Dominant mutations within DNAJB6 (Hsp40)—an Hsp70 co-chaperone—lead to a protein aggregation-linked myopathy termed Limb-Girdle Muscular Dystrophy Type D1 (LGMDD1). Here, we used the yeast prion model client in conjunction with in vitro chaperone activity assays to gain mechanistic insights into the molecular basis of LGMDD1. Here, we show how mutations analogous to those found in LGMDD1 affect Sis1 (a functional homolog of human DNAJB6) function by altering the structure of client protein aggregates, interfering with the Hsp70 ATPase cycle, dimerization and substrate processing; poisoning the function of wild-type protein. These results uncover the mechanisms through which LGMDD1-associated mutations alter chaperone activity, and provide insights relevant to potential therapeutic interventions.

Suggested Citation

  • Ankan K. Bhadra & Michael J. Rau & Jil A. Daw & James A. J. Fitzpatrick & Conrad C. Weihl & Heather L. True, 2022. "Disease-associated mutations within the yeast DNAJB6 homolog Sis1 slow conformer-specific substrate processing and can be corrected by the modulation of nucleotide exchange factors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32318-9
    DOI: 10.1038/s41467-022-32318-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32318-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32318-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anne S. Wentink & Nadinath B. Nillegoda & Jennifer Feufel & Gabrielė Ubartaitė & Carolyn P. Schneider & Paolo De Los Rios & Janosch Hennig & Alessandro Barducci & Bernd Bukau, 2020. "Molecular dissection of amyloid disaggregation by human HSP70," Nature, Nature, vol. 587(7834), pages 483-488, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Itika Saha & Patricia Yuste-Checa & Miguel Silva Padilha & Qiang Guo & Roman Körner & Hauke Holthusen & Victoria A. Trinkaus & Irina Dudanova & Rubén Fernández-Busnadiego & Wolfgang Baumeister & David, 2023. "The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Matthias M. Schneider & Saurabh Gautam & Therese W. Herling & Ewa Andrzejewska & Georg Krainer & Alyssa M. Miller & Victoria A. Trinkaus & Quentin A. E. Peter & Francesco Simone Ruggeri & Michele Vend, 2021. "The Hsc70 disaggregation machinery removes monomer units directly from α-synuclein fibril ends," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Ricarda Törner & Tatsiana Kupreichyk & Lothar Gremer & Elisa Colas Debled & Daphna Fenel & Sarah Schemmert & Pierre Gans & Dieter Willbold & Guy Schoehn & Wolfgang Hoyer & Jerome Boisbouvier, 2022. "Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Eduardo Pinho Melo & Tasuku Konno & Ilaria Farace & Mosab Ali Awadelkareem & Lise R. Skov & Fernando Teodoro & Teresa P. Sancho & Adrienne W. Paton & James C. Paton & Matthew Fares & Pedro M. R. Paulo, 2022. "Stress-induced protein disaggregation in the endoplasmic reticulum catalysed by BiP," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Meital Abayev-Avraham & Yehuda Salzberg & Dar Gliksberg & Meital Oren-Suissa & Rina Rosenzweig, 2023. "DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Sabine M. Ulamec & Roberto Maya-Martinez & Emily J. Byrd & Katherine M. Dewison & Yong Xu & Leon F. Willis & Frank Sobott & George R. Heath & Patricija Oosten Hawle & Vladimir L. Buchman & Sheena E. R, 2022. "Single residue modulators of amyloid formation in the N-terminal P1-region of α-synuclein," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Verena Rukes & Mathieu E. Rebeaud & Louis W. Perrin & Paolo De Los Rios & Chan Cao, 2024. "Single-molecule evidence of Entropic Pulling by Hsp70 chaperones," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. S. M. Ayala Mariscal & M. L. Pigazzini & Y. Richter & M. Özel & I. L. Grothaus & J. Protze & K. Ziege & M. Kulke & M. ElBediwi & J. V. Vermaas & L. Colombi Ciacchi & S. Köppen & F. Liu & J. Kirstein, 2022. "Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT," Nature Communications, Nature, vol. 13(1), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32318-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.