IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003988.html
   My bibliography  Save this article

Mapping the Pareto Optimal Design Space for a Functionally Deimmunized Biotherapeutic Candidate

Author

Listed:
  • Regina S Salvat
  • Andrew S Parker
  • Yoonjoo Choi
  • Chris Bailey-Kellogg
  • Karl E Griswold

Abstract

The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical application. As a result, there is a growing need for improved deimmunization technologies. We have recently described algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico analysis of this dual objective design space reveals that there is no single global optimum with respect to protein deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein performance were found to map a functional sequence space that correlated well with computational predictions. These results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and de-risking experimental deimmunization efforts.Author Summary: Protein therapeutics have created a revolution in disease therapy, providing improved outcomes for prevalent illnesses and conditions while at the same time yielding treatments for diseases that were previously intractable. However, this powerful class of drugs is subject to their own unique challenges and risk factors. In particular, the biological origins of therapeutic proteins predispose them towards eliciting a detrimental immune response from the patient's own body. Therefore, fully capitalizing on the medicinal reservoir of natural and engineered proteins will require efficient, effective, and broadly applicable deimmunization technologies. We have developed deimmunization algorithms that simultaneously optimize therapeutic candidates for both low immunogenicity and high-level activity and stability. Here, we combine computational modeling and experimental analysis to show that the process of protein deimmunization manifests inherent tradeoffs between immunogenic potential and biomolecular function. Our experimental results demonstrate that dual objective optimization allows us to assess and design for these tradeoffs, thereby enabling facile construction of deimmunized variants that span a broad range of immunogenicity and functionality performance parameters. Thus, we can rapidly map the design space for deimmunized drug candidates, and we can use this information to guide selection of engineered proteins that are most likely to meet performance benchmarks for a given clinical application.

Suggested Citation

  • Regina S Salvat & Andrew S Parker & Yoonjoo Choi & Chris Bailey-Kellogg & Karl E Griswold, 2015. "Mapping the Pareto Optimal Design Space for a Functionally Deimmunized Biotherapeutic Candidate," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-15, January.
  • Handle: RePEc:plo:pcbi00:1003988
    DOI: 10.1371/journal.pcbi.1003988
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003988
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003988&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003988?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Wang & John Sidney & Courtney Dow & Bianca Mothé & Alessandro Sette & Bjoern Peters, 2008. "A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emily K. Makowski & Patrick C. Kinnunen & Jie Huang & Lina Wu & Matthew D. Smith & Tiexin Wang & Alec A. Desai & Craig N. Streu & Yulei Zhang & Jennifer M. Zupancic & John S. Schardt & Jennifer J. Lin, 2022. "Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Zhang & Peng Wang & Nikitas Papangelopoulos & Ying Xu & Alessandro Sette & Philip E Bourne & Ole Lund & Julia Ponomarenko & Morten Nielsen & Bjoern Peters, 2010. "Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-10, February.
    2. repec:arp:sjmhsm:2020:p:71-76 is not listed on IDEAS
    3. Kyle Saylor & Ben Donnan & Chenming Zhang, 2022. "Computational mining of MHC class II epitopes for the development of universal immunogenic proteins," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-17, March.
    4. Satyavani Kaliamurthi & Gurudeeban Selvaraj & Sathishkumar Chinnasamy & Qiankun Wang & Asma Sindhoo Nangraj & William C. Cho & Keren Gu & Dong-Qing Wei, 2019. "Immunomics Datasets and Tools: To Identify Potential Epitope Segments for Designing Chimeric Vaccine Candidate to Cervix Papilloma," Data, MDPI, vol. 4(1), pages 1-17, February.
    5. Gouri Shankar Pandey & Chen Yanover & Tom E Howard & Zuben E Sauna, 2013. "Polymorphisms in the F8 Gene and MHC-II Variants as Risk Factors for the Development of Inhibitory Anti-Factor VIII Antibodies during the Treatment of Hemophilia A: A Computational Assessment," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-11, May.
    6. Masahiko Mori & Kei Matsuki & Tomoyuki Maekawa & Mari Tanaka & Busarawan Sriwanthana & Masaru Yokoyama & Koya Ariyoshi, 2012. "Development of a Novel In Silico Docking Simulation Model for the Fine HIV-1 Cytotoxic T Lymphocyte Epitope Mapping," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-6, July.
    7. Stephen J Goodswen & Paul J Kennedy & John T Ellis, 2014. "Enhancing In Silico Protein-Based Vaccine Discovery for Eukaryotic Pathogens Using Predicted Peptide-MHC Binding and Peptide Conservation Scores," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.