IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31400-6.html
   My bibliography  Save this article

Chain flexibility of medicinal lipids determines their selective partitioning into lipid droplets

Author

Listed:
  • So-Hee Son

    (Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu
    Pohang University of Science and Technology (POSTECH))

  • Gyuri Park

    (Pohang University of Science and Technology (POSTECH))

  • Junho Lim

    (Pohang University of Science and Technology (POSTECH))

  • Chang Yun Son

    (Pohang University of Science and Technology (POSTECH)
    Pohang University of Science and Technology (POSTECH)
    Yonsei University)

  • Seung Soo Oh

    (Pohang University of Science and Technology (POSTECH)
    Pohang University of Science and Technology (POSTECH)
    Yonsei University)

  • Ju Young Lee

    (Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu)

Abstract

In guiding lipid droplets (LDs) to serve as storage vessels that insulate high-value lipophilic compounds in cells, we demonstrate that chain flexibility of lipids determines their selective migration in intracellular LDs. Focusing on commercially important medicinal lipids with biogenetic similarity but structural dissimilarity, we computationally and experimentally validate that LD remodeling should be differentiated between overproduction of structurally flexible squalene and that of rigid zeaxanthin and β-carotene. In molecular dynamics simulations, worm-like flexible squalene is readily deformed to move through intertwined chains of triacylglycerols in the LD core, whereas rod-like rigid zeaxanthin is trapped on the LD surface due to a high free energy barrier in diffusion. By designing yeast cells with either much larger LDs or with a greater number of LDs, we observe that intracellular storage of squalene significantly increases with LD volume expansion, but that of zeaxanthin and β-carotene is enhanced through LD surface broadening; as visually evidenced, the outcomes represent internal penetration of squalene and surface localization of zeaxanthin and β-carotene. Our study shows the computational and experimental validation of selective lipid migration into a phase-separated organelle and reveals LD dynamics and functionalization.

Suggested Citation

  • So-Hee Son & Gyuri Park & Junho Lim & Chang Yun Son & Seung Soo Oh & Ju Young Lee, 2022. "Chain flexibility of medicinal lipids determines their selective partitioning into lipid droplets," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31400-6
    DOI: 10.1038/s41467-022-31400-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31400-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31400-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lucie Caillon & Vincent Nieto & Pauline Gehan & Mohyeddine Omrane & Nicolas Rodriguez & Luca Monticelli & Abdou Rachid Thiam, 2020. "Triacylglycerols sequester monotopic membrane proteins to lipid droplets," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    2. Peter Eastman & Jason Swails & John D Chodera & Robert T McGibbon & Yutong Zhao & Kyle A Beauchamp & Lee-Ping Wang & Andrew C Simmonett & Matthew P Harrigan & Chaya D Stern & Rafal P Wiewiora & Bernar, 2017. "OpenMM 7: Rapid development of high performance algorithms for molecular dynamics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-17, July.
    3. Liang Sun & Jae Won Lee & Sangdo Yook & Stephan Lane & Ziqiao Sun & Soo Rin Kim & Yong-Su Jin, 2021. "Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Radin Sadre & Peiyen Kuo & Jiaxing Chen & Yang Yang & Aparajita Banerjee & Christoph Benning & Bjoern Hamberger, 2019. "Cytosolic lipid droplets as engineered organelles for production and accumulation of terpenoid biomaterials in leaves," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Hentrich & Mateusz Putyrski & Hanh Hanuschka & Waldemar Preis & Sarah-Jane Kellmann & Melissa Wich & Manuel Cavada & Sarah Hanselka & Victor S. Lelyveld & Francisco Ylera, 2024. "Engineered reversible inhibition of SpyCatcher reactivity enables rapid generation of bispecific antibodies," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Andreas Mardt & Tim Hempel & Cecilia Clementi & Frank Noé, 2022. "Deep learning to decompose macromolecules into independent Markovian domains," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Cheng Shen & Yuqing Zhang & Wenwen Cui & Yimeng Zhao & Danqi Sheng & Xinyu Teng & Miaoqing Shao & Muneyoshi Ichikawa & Jin Wang & Motoyuki Hattori, 2023. "Structural insights into the allosteric inhibition of P2X4 receptors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. F. P. Panei & P. Gkeka & M. Bonomi, 2024. "Identifying small-molecules binding sites in RNA conformational ensembles with SHAMAN," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Shana Bergman & Rosemary J. Cater & Ambrose Plante & Filippo Mancia & George Khelashvili, 2023. "Substrate binding-induced conformational transitions in the omega-3 fatty acid transporter MFSD2A," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Kuang-Ting Ko & Frank Lennartz & David Mekhaiel & Bora Guloglu & Arianna Marini & Danielle J. Deuker & Carole A. Long & Matthijs M. Jore & Kazutoyo Miura & Sumi Biswas & Matthew K. Higgins, 2022. "Structure of the malaria vaccine candidate Pfs48/45 and its recognition by transmission blocking antibodies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Hongjun Bai & Eric Lewitus & Yifan Li & Paul V. Thomas & Michelle Zemil & Mélanie Merbah & Caroline E. Peterson & Thujitha Thuraisamy & Phyllis A. Rees & Agnes Hajduczki & Vincent Dussupt & Bonnie Sli, 2024. "Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Do Hoon Kwon & Feng Zhang & Brett A. McCray & Shasha Feng & Meha Kumar & Jeremy M. Sullivan & Wonpil Im & Charlotte J. Sumner & Seok-Yong Lee, 2023. "TRPV4-Rho GTPase complex structures reveal mechanisms of gating and disease," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Ritaban Halder & Daniel A. Nissley & Ian Sitarik & Yang Jiang & Yiyun Rao & Quyen V. Vu & Mai Suan Li & Justin Pritchard & Edward P. O’Brien, 2023. "How soluble misfolded proteins bypass chaperones at the molecular level," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Giacomo Janson & Gilberto Valdes-Garcia & Lim Heo & Michael Feig, 2023. "Direct generation of protein conformational ensembles via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Jin H. Yang & Hugo B. Brandão & Anders S. Hansen, 2023. "DNA double-strand break end synapsis by DNA loop extrusion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Rodrigo G. Fernandez Lahore & Niccolò P. Pampaloni & Enrico Schiewer & M.-Marcel Heim & Linda Tillert & Johannes Vierock & Johannes Oppermann & Jakob Walther & Dietmar Schmitz & David Owald & Andrew J, 2022. "Calcium-permeable channelrhodopsins for the photocontrol of calcium signalling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Yi-Tzu Kuo & Amanda Souza Câmara & Veit Schubert & Pavel Neumann & Jiří Macas & Michael Melzer & Jianyong Chen & Jörg Fuchs & Simone Abel & Evelyn Klocke & Bruno Huettel & Axel Himmelbach & Dmitri Dem, 2023. "Holocentromeres can consist of merely a few megabase-sized satellite arrays," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Evgenii Lobzaev & Michael A. Herrera & Martyna Kasprzyk & Giovanni Stracquadanio, 2024. "Protein engineering using variational free energy approximation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Po-Yin Chen & Yung-Chih Chen & Po-Pang Chen & Kuan-Ting Lin & Karen Sargsyan & Chao-Ping Hsu & Wei-Le Wang & Kuo-Chiang Hsia & See-Yeun Ting, 2024. "A whole-cell platform for discovering synthetic cell adhesion molecules in bacteria," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    17. S. M. Ayala Mariscal & M. L. Pigazzini & Y. Richter & M. Özel & I. L. Grothaus & J. Protze & K. Ziege & M. Kulke & M. ElBediwi & J. V. Vermaas & L. Colombi Ciacchi & S. Köppen & F. Liu & J. Kirstein, 2022. "Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT," Nature Communications, Nature, vol. 13(1), pages 1-25, December.
    18. Melanie A. Orlando & Hunter J. T. Pouillon & Saikat Mandal & Lee Kroos & Benjamin J. Orlando, 2024. "Substrate engagement by the intramembrane metalloprotease SpoIVFB," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Nicolas Papadopoulos & Audrey Nédélec & Allison Derenne & Teodor Asvadur Şulea & Christian Pecquet & Ilyas Chachoua & Gaëlle Vertenoeil & Thomas Tilmant & Andrei-Jose Petrescu & Gabriel Mazzucchelli &, 2023. "Oncogenic CALR mutant C-terminus mediates dual binding to the thrombopoietin receptor triggering complex dimerization and activation," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    20. Janni Harju & Muriel C. F. Teeseling & Chase P. Broedersz, 2024. "Loop-extruders alter bacterial chromosome topology to direct entropic forces for segregation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31400-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.