IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31385-2.html
   My bibliography  Save this article

Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians

Author

Listed:
  • Lily L. Wong

    (Oklahoma Medical Research Foundation)

  • Christina G. Bruxvoort

    (Oklahoma Medical Research Foundation
    Oklahoma Medical Research Foundation
    University of Oklahoma Health Sciences Center
    Department of Veteran Affairs Medical Center - Research Services)

  • Nicholas I. Cejda

    (Oklahoma Medical Research Foundation
    Oklahoma Medical Research Foundation)

  • Matthew R. Delaney

    (Oklahoma Medical Research Foundation)

  • Jannette Rodriguez Otero

    (University of Illinois at Urbana-Champaign
    Universidad Interamericana de Puerto Rico)

  • David J. Forsthoefel

    (Oklahoma Medical Research Foundation
    University of Oklahoma Health Sciences Center)

Abstract

Lipid metabolism plays an instructive role in regulating stem cell state and differentiation. However, the roles of lipid mobilization and utilization in stem cell-driven regeneration are unclear. Planarian flatworms readily restore missing tissue due to injury-induced activation of pluripotent somatic stem cells called neoblasts. Here, we identify two intestine-enriched orthologs of apolipoprotein b, apob-1 and apob-2, which mediate transport of neutral lipid stores from the intestine to target tissues including neoblasts, and are required for tissue homeostasis and regeneration. Inhibition of apob function by RNAi causes head regression and lysis in uninjured animals, and delays body axis re-establishment and regeneration of multiple organs in amputated fragments. Furthermore, apob RNAi causes expansion of the population of differentiating neoblast progeny and dysregulates expression of genes enriched in differentiating and mature cells in eight major cell type lineages. We conclude that intestine-derived lipids serve as a source of metabolites required for neoblast progeny differentiation.

Suggested Citation

  • Lily L. Wong & Christina G. Bruxvoort & Nicholas I. Cejda & Matthew R. Delaney & Jannette Rodriguez Otero & David J. Forsthoefel, 2022. "Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31385-2
    DOI: 10.1038/s41467-022-31385-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31385-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31385-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu-ichi Tsukada & Jia Fang & Hediye Erdjument-Bromage & Maria E. Warren & Christoph H. Borchers & Paul Tempst & Yi Zhang, 2006. "Histone demethylation by a family of JmjC domain-containing proteins," Nature, Nature, vol. 439(7078), pages 811-816, February.
    2. Marlen Knobloch & Simon M. G. Braun & Luis Zurkirchen & Carolin von Schoultz & Nicola Zamboni & Marcos J. Araúzo-Bravo & Werner J. Kovacs & Özlem Karalay & Ueli Suter & Raquel A. C. Machado & Marta Ro, 2013. "Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis," Nature, Nature, vol. 493(7431), pages 226-230, January.
    3. Lauren E. Cote & Eric Simental & Peter W. Reddien, 2019. "Muscle functions as a connective tissue and source of extracellular matrix in planarians," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. Shree Ram Singh & Xiankun Zeng & Jiangsha Zhao & Ying Liu & Gerald Hou & Hanhan Liu & Steven X. Hou, 2016. "The lipolysis pathway sustains normal and transformed stem cells in adult Drosophila," Nature, Nature, vol. 538(7623), pages 109-113, October.
    5. Yuliana Mihaylova & Prasad Abnave & Damian Kao & Samantha Hughes & Alvina Lai & Farah Jaber-Hijazi & Nobuyoshi Kosaka & A. Aziz Aboobaker, 2018. "Conservation of epigenetic regulation by the MLL3/4 tumour suppressor in planarian pluripotent stem cells," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    6. Daniela Panáková & Hein Sprong & Eric Marois & Christoph Thiele & Suzanne Eaton, 2005. "Lipoprotein particles are required for Hedgehog and Wingless signalling," Nature, Nature, vol. 435(7038), pages 58-65, May.
    7. Junsu Kang & Jianxin Hu & Ravi Karra & Amy L. Dickson & Valerie A. Tornini & Gregory Nachtrab & Matthew Gemberling & Joseph A. Goldman & Brian L. Black & Kenneth D. Poss, 2016. "Modulation of tissue repair by regeneration enhancer elements," Nature, Nature, vol. 532(7598), pages 201-206, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryan E. Hulett & Julian O. Kimura & D. Marcela Bolaños & Yi-Jyun Luo & Carlos Rivera-López & Lorenzo Ricci & Mansi Srivastava, 2023. "Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eudald Pascual-Carreras & Marta Marín-Barba & Sergio Castillo-Lara & Pablo Coronel-Córdoba & Marta Silvia Magri & Grant N. Wheeler & Jose Luis Gómez-Skarmeta & Josep F. Abril & Emili Saló & Teresa Ade, 2023. "Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. J. Colgren & S. A. Nichols, 2022. "MRTF specifies a muscle-like contractile module in Porifera," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Ting Zhao & Yan Hong & Bowen Yan & Suming Huang & Guo-li Ming & Hongjun Song, 2024. "Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Mario Ivanković & Jeremias N. Brand & Luca Pandolfini & Thomas Brown & Martin Pippel & Andrei Rozanski & Til Schubert & Markus A. Grohme & Sylke Winkler & Laura Robledillo & Meng Zhang & Azzurra Codin, 2024. "A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Sofia Madsen & Ana C. Delgado & Christelle Cadilhac & Vanille Maillard & Fabrice Battiston & Carla Marie Igelbüscher & Simon De Neck & Elia Magrinelli & Denis Jabaudon & Ludovic Telley & Fiona Doetsch, 2024. "A fluorescent perilipin 2 knock-in mouse model reveals a high abundance of lipid droplets in the developing and adult brain," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Lifan Chen & Zisheng Fan & Jie Chang & Ruirui Yang & Hui Hou & Hao Guo & Yinghui Zhang & Tianbiao Yang & Chenmao Zhou & Qibang Sui & Zhengyang Chen & Chen Zheng & Xinyue Hao & Keke Zhang & Rongrong Cu, 2023. "Sequence-based drug design as a concept in computational drug design," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    8. Daniel J A Derrick & Kathryn Wolton & Richard A Currie & Marcus John Tindall, 2021. "A mathematical model of the role of aggregation in sonic hedgehog signalling," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-20, February.
    9. Marco Luciani & Chiara Garsia & Stefano Beretta & Ingrid Cifola & Clelia Peano & Ivan Merelli & Luca Petiti & Annarita Miccio & Vasco Meneghini & Angela Gritti, 2024. "Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    10. Aiko Kawasumi-Kita & Sang-Woo Lee & Daisuke Ohtsuka & Kaori Niimi & Yoshifumi Asakura & Keiichi Kitajima & Yuto Sakane & Koji Tamura & Haruki Ochi & Ken-ichi T. Suzuki & Yoshihiro Morishita, 2024. "hoxc12/c13 as key regulators for rebooting the developmental program in Xenopus limb regeneration," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Zachary T. Spencer & Victoria H. Ng & Hassina Benchabane & Ghalia Saad Siddiqui & Deepesh Duwadi & Ben Maines & Jamal M. Bryant & Anna Schwarzkopf & Kai Yuan & Sara N. Kassel & Anant Mishra & Ashley P, 2023. "The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Valentina Cigliola & Adam Shoffner & Nutishia Lee & Jianhong Ou & Trevor J. Gonzalez & Jiaul Hoque & Clayton J. Becker & Yanchao Han & Grace Shen & Timothy D. Faw & Muhammad M. Abd-El-Barr & Shyni Var, 2023. "Spinal cord repair is modulated by the neurogenic factor Hb-egf under direction of a regeneration-associated enhancer," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31385-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.