IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09539-6.html
   My bibliography  Save this article

Muscle functions as a connective tissue and source of extracellular matrix in planarians

Author

Listed:
  • Lauren E. Cote

    (Massachusetts Institute of Technology)

  • Eric Simental

    (Massachusetts Institute of Technology
    University of California San Francisco)

  • Peter W. Reddien

    (Massachusetts Institute of Technology)

Abstract

Regeneration and tissue turnover require new cell production and positional information. Planarians are flatworms capable of regenerating all body parts using a population of stem cells called neoblasts. The positional information required for tissue patterning is primarily harbored by muscle cells, which also control body contraction. Here we produce an in silico planarian matrisome and use recent whole-animal single-cell-transcriptome data to determine that muscle is a major source of extracellular matrix (ECM). No other ECM-secreting, fibroblast-like cell type was detected. Instead, muscle cells express core ECM components, including all 19 collagen-encoding genes. Inhibition of muscle-expressed hemicentin-1 (hmcn-1), which encodes a highly conserved ECM glycoprotein, results in ectopic peripheral localization of cells, including neoblasts, outside of the muscle layer. ECM secretion and hmcn-1-dependent maintenance of tissue separation indicate that muscle functions as a planarian connective tissue, raising the possibility of broad roles for connective tissue in adult positional information.

Suggested Citation

  • Lauren E. Cote & Eric Simental & Peter W. Reddien, 2019. "Muscle functions as a connective tissue and source of extracellular matrix in planarians," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09539-6
    DOI: 10.1038/s41467-019-09539-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09539-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09539-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lily L. Wong & Christina G. Bruxvoort & Nicholas I. Cejda & Matthew R. Delaney & Jannette Rodriguez Otero & David J. Forsthoefel, 2022. "Intestine-enriched apolipoprotein b orthologs are required for stem cell progeny differentiation and regeneration in planarians," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. J. Colgren & S. A. Nichols, 2022. "MRTF specifies a muscle-like contractile module in Porifera," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Eudald Pascual-Carreras & Marta Marín-Barba & Sergio Castillo-Lara & Pablo Coronel-Córdoba & Marta Silvia Magri & Grant N. Wheeler & Jose Luis Gómez-Skarmeta & Josep F. Abril & Emili Saló & Teresa Ade, 2023. "Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09539-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.