IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30924-1.html
   My bibliography  Save this article

Cell fate roadmap of human primed-to-naive transition reveals preimplantation cell lineage signatures

Author

Listed:
  • Yan Bi

    (Tongji University
    Tongji University
    Tongji University)

  • Zhifen Tu

    (Tongji University
    Tongji University
    Tongji University)

  • Jianfeng Zhou

    (Tongji University
    Tongji University
    Tongji University)

  • Xuehao Zhu

    (Tongji University
    Tongji University
    Tongji University)

  • Hong Wang

    (Tongji University
    Tongji University
    Tongji University)

  • Shaorong Gao

    (Tongji University
    Tongji University
    Tongji University)

  • Yixuan Wang

    (Tongji University
    Tongji University
    Tongji University)

Abstract

Human naive pluripotent stem cells offer a unique window into early embryogenesis studies. Recent studies have reported several strategies to obtain cells in the naive state. However, cell fate transitions and the underlying mechanisms remain poorly understood. Here, by a dual fluorescent reporter system, we depict the cell fate dynamics from primed state toward naive pluripotency with ALPG activation followed by the activation of OCT4-distal enhancer. Integration of transcription profiles and the chromatin accessibility landscape reveals the appearance of primitive endoderm and trophectoderm signatures in the transitioning subpopulations, with the capacities for derivation of extra-embryonic endoderm and trophoblast stem cell lines, respectively. Furthermore, despite different fluorescent dynamics, all transitioning intermediates are capable of reaching the naive state with prolonged induction, showing their developmental plasticity and potential. Overall, our study describes a global cell roadmap toward naive pluripotency and provides hints for embryo modeling-related studies.

Suggested Citation

  • Yan Bi & Zhifen Tu & Jianfeng Zhou & Xuehao Zhu & Hong Wang & Shaorong Gao & Yixuan Wang, 2022. "Cell fate roadmap of human primed-to-naive transition reveals preimplantation cell lineage signatures," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30924-1
    DOI: 10.1038/s41467-022-30924-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30924-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30924-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ohad Gafni & Leehee Weinberger & Abed AlFatah Mansour & Yair S. Manor & Elad Chomsky & Dalit Ben-Yosef & Yael Kalma & Sergey Viukov & Itay Maza & Asaf Zviran & Yoach Rais & Zohar Shipony & Zohar Mukam, 2013. "Derivation of novel human ground state naive pluripotent stem cells," Nature, Nature, vol. 504(7479), pages 282-286, December.
    2. Hongwei Chen & Irène Aksoy & Fabrice Gonnot & Pierre Osteil & Maxime Aubry & Claire Hamela & Cloé Rognard & Arnaud Hochard & Sophie Voisin & Emeline Fontaine & Magali Mure & Marielle Afanassieff & Elo, 2015. "Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency," Nature Communications, Nature, vol. 6(1), pages 1-17, November.
    3. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    4. Xiaodong Liu & John F. Ouyang & Fernando J. Rossello & Jia Ping Tan & Kathryn C. Davidson & Daniela S. Valdes & Jan Schröder & Yu B. Y. Sun & Joseph Chen & Anja S. Knaupp & Guizhi Sun & Hun S. Chy & Z, 2020. "Reprogramming roadmap reveals route to human induced trophoblast stem cells," Nature, Nature, vol. 586(7827), pages 101-107, October.
    5. Jingyi Wu & Bo Huang & He Chen & Qiangzong Yin & Yang Liu & Yunlong Xiang & Bingjie Zhang & Bofeng Liu & Qiujun Wang & Weikun Xia & Wenzhi Li & Yuanyuan Li & Jing Ma & Xu Peng & Hui Zheng & Jia Ming &, 2016. "The landscape of accessible chromatin in mammalian preimplantation embryos," Nature, Nature, vol. 534(7609), pages 652-657, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Panariello & Onelia Gagliano & Camilla Luni & Antonio Grimaldi & Silvia Angiolillo & Wei Qin & Anna Manfredi & Patrizia Annunziata & Shaked Slovin & Lorenzo Vaccaro & Sara Riccardo & Valenti, 2023. "Cellular population dynamics shape the route to human pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Yanchuan Li & Huamei Li & Cheng Peng & Ge Meng & Yijun Lu & Honglin Liu & Li Cui & Huan Zhou & Zhu Xu & Lingyun Sun & Lihong Liu & Qing Xiong & Beicheng Sun & Shiping Jiao, 2024. "Unraveling the spatial organization and development of human thymocytes through integration of spatial transcriptomics and single-cell multi-omics profiling," Nature Communications, Nature, vol. 15(1), pages 1-25, December.
    4. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    5. Yoshiaki Yasumizu & Naganari Ohkura & Hisashi Murata & Makoto Kinoshita & Soichiro Funaki & Satoshi Nojima & Kansuke Kido & Masaharu Kohara & Daisuke Motooka & Daisuke Okuzaki & Shuji Suganami & Eriko, 2022. "Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Chen Dong & Shuhua Fu & Rowan M. Karvas & Brian Chew & Laura A. Fischer & Xiaoyun Xing & Jessica K. Harrison & Pooja Popli & Ramakrishna Kommagani & Ting Wang & Bo Zhang & Thorold W. Theunissen, 2022. "A genome-wide CRISPR-Cas9 knockout screen identifies essential and growth-restricting genes in human trophoblast stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    8. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Rinako Nakagawa & Miriam Llorian & Sunita Varsani-Brown & Probir Chakravarty & Jeannie M. Camarillo & David Barry & Roger George & Neil P. Blackledge & Graham Duddy & Neil L. Kelleher & Robert J. Klos, 2024. "Epi-microRNA mediated metabolic reprogramming counteracts hypoxia to preserve affinity maturation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. David J. Dittmar & Franziska Pielmeier & Nicholas Strieder & Alexander Fischer & Michael Herbst & Hanna Stanewsky & Niklas Wenzl & Eveline Röseler & Rüdiger Eder & Claudia Gebhard & Lucia Schwarzfisch, 2024. "Donor regulatory T cells rapidly adapt to recipient tissues to control murine acute graft-versus-host disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Magnus Zethoven & Luciano Martelotto & Andrew Pattison & Blake Bowen & Shiva Balachander & Aidan Flynn & Fernando J. Rossello & Annette Hogg & Julie A. Miller & Zdenek Frysak & Sean Grimmond & Lauren , 2022. "Single-nuclei and bulk-tissue gene-expression analysis of pheochromocytoma and paraganglioma links disease subtypes with tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    13. Seong Eun Lee & Seongyeol Park & Shinae Yi & Na Rae Choi & Mi Ae Lim & Jae Won Chang & Ho-Ryun Won & Je Ryong Kim & Hye Mi Ko & Eun-Jae Chung & Young Joo Park & Sun Wook Cho & Hyeong Won Yu & June You, 2024. "Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. David G. Priest & Takeshi Ebihara & Janyerkye Tulyeu & Jonas N. Søndergaard & Shuhei Sakakibara & Fuminori Sugihara & Shunichiro Nakao & Yuki Togami & Jumpei Yoshimura & Hiroshi Ito & Shinya Onishi & , 2024. "Atypical and non-classical CD45RBlo memory B cells are the majority of circulating SARS-CoV-2 specific B cells following mRNA vaccination or COVID-19," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    15. Jeff Yat-Fai Chung & Philip Chiu-Tsun Tang & Max Kam-Kwan Chan & Vivian Weiwen Xue & Xiao-Ru Huang & Calvin Sze-Hang Ng & Dongmei Zhang & Kam-Tong Leung & Chun-Kwok Wong & Tin-Lap Lee & Eric W-F Lam &, 2023. "Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Fabian Peisker & Maurice Halder & James Nagai & Susanne Ziegler & Nadine Kaesler & Konrad Hoeft & Ronghui Li & Eric M. J. Bindels & Christoph Kuppe & Julia Moellmann & Michael Lehrke & Christian Stopp, 2022. "Mapping the cardiac vascular niche in heart failure," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    17. Jingjing Lou & Yasaman Rezvani & Argenis Arriojas & Yihan Wu & Nachiket Shankar & David Degras & Caroline D. Keroack & Manoj T. Duraisingh & Kourosh Zarringhalam & Marc-Jan Gubbels, 2024. "Single cell expression and chromatin accessibility of the Toxoplasma gondii lytic cycle identifies AP2XII-8 as an essential ribosome regulon driver," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Timo N. Kohler & Joachim Jonghe & Anna L. Ellermann & Ayaka Yanagida & Michael Herger & Erin M. Slatery & Antonia Weberling & Clara Munger & Katrin Fischer & Carla Mulas & Alex Winkel & Connor Ross & , 2023. "Plakoglobin is a mechanoresponsive regulator of naive pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Kun Yin & Yiling Xu & Ye Guo & Zhong Zheng & Xinrui Lin & Meijuan Zhao & He Dong & Dianyi Liang & Zhi Zhu & Junhua Zheng & Shichao Lin & Jia Song & Chaoyong Yang, 2024. "Dyna-vivo-seq unveils cellular RNA dynamics during acute kidney injury via in vivo metabolic RNA labeling-based scRNA-seq," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    20. Alek G. Erickson & Alessia Motta & Maria Eleni Kastriti & Steven Edwards & Fanny Coulpier & Emy Théoulle & Aliia Murtazina & Irina Poverennaya & Daniel Wies & Jeremy Ganofsky & Giovanni Canu & Francoi, 2024. "Motor innervation directs the correct development of the mouse sympathetic nervous system," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30924-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.