IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33982-7.html
   My bibliography  Save this article

Single-cell transcriptomic analysis highlights origin and pathological process of human endometrioid endometrial carcinoma

Author

Listed:
  • Xiaojun Ren

    (Obstetrics and Gynecology Hospital of Fudan University
    Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases)

  • Jianqing Liang

    (Fudan University
    Fudan University)

  • Yiming Zhang

    (Fudan University
    Fudan University)

  • Ning Jiang

    (Fudan University
    Fudan University)

  • Yuhui Xu

    (Obstetrics and Gynecology Hospital of Fudan University
    Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases)

  • Mengdi Qiu

    (Fudan University
    Fudan University)

  • Yiqin Wang

    (Obstetrics and Gynecology Hospital of Fudan University
    Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases)

  • Bing Zhao

    (Fudan University
    Fudan University)

  • Xiaojun Chen

    (Obstetrics and Gynecology Hospital of Fudan University
    Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases)

Abstract

Endometrial cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states. Current models do not adequately reflect oncogenic origin and pathological progression in patients. Here we use single-cell RNA sequencing to profile cells from normal endometrium, atypical endometrial hyperplasia, and endometrioid endometrial cancer (EEC), which altogether represent the step-by-step development of endometrial cancer. We find that EEC originates from endometrial epithelial cells but not stromal cells, and unciliated glandular epithelium is the source of EEC. We also identify LCN2 + /SAA1/2 + cells as a featured subpopulation of endometrial tumorigenesis. Finally, the stromal niche and immune environment changes during EEC progression are described. This study elucidates the evolution of cell populations in EEC development at single-cell resolution, which would provide a direction to facilitate EEC research and diagnosis.

Suggested Citation

  • Xiaojun Ren & Jianqing Liang & Yiming Zhang & Ning Jiang & Yuhui Xu & Mengdi Qiu & Yiqin Wang & Bing Zhao & Xiaojun Chen, 2022. "Single-cell transcriptomic analysis highlights origin and pathological process of human endometrioid endometrial carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33982-7
    DOI: 10.1038/s41467-022-33982-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33982-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33982-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gioele La Manno & Ruslan Soldatov & Amit Zeisel & Emelie Braun & Hannah Hochgerner & Viktor Petukhov & Katja Lidschreiber & Maria E. Kastriti & Peter Lönnerberg & Alessandro Furlan & Jean Fan & Lars E, 2018. "RNA velocity of single cells," Nature, Nature, vol. 560(7719), pages 494-498, August.
    2. Zhaohui Chen & Lijie Zhou & Lilong Liu & Yaxin Hou & Ming Xiong & Yu Yang & Junyi Hu & Ke Chen, 2020. "Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuanyuan Wei & Wei Sun & Kangjie Shen & Jingqin Zhong & Wanlin Liu & Zixu Gao & Yu Xu & Lu Wang & Tu Hu & Ming Ren & Yinlam Li & Yu Zhu & Shaoluan Zheng & Ming Zhu & Rongkui Luo & Yanwen Yang & Yingy, 2023. "Delineating the early dissemination mechanisms of acral melanoma by integrating single-cell and spatial transcriptomic analyses," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Huanhuan Tan & Weixu Wang & Congjin Zhou & Yanfeng Wang & Shu Zhang & Pinglan Yang & Rui Guo & Wei Chen & Jinwen Zhang & Lan Ye & Yiqiang Cui & Ting Ni & Ke Zheng, 2023. "Single-cell RNA-seq uncovers dynamic processes orchestrated by RNA-binding protein DDX43 in chromatin remodeling during spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Christoph Ziegenhain & Rickard Sandberg, 2021. "BAMboozle removes genetic variation from human sequence data for open data sharing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Yoshiaki Yasumizu & Naganari Ohkura & Hisashi Murata & Makoto Kinoshita & Soichiro Funaki & Satoshi Nojima & Kansuke Kido & Masaharu Kohara & Daisuke Motooka & Daisuke Okuzaki & Shuji Suganami & Eriko, 2022. "Myasthenia gravis-specific aberrant neuromuscular gene expression by medullary thymic epithelial cells in thymoma," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Jialiang S. Wang & Tushar Kamath & Courtney M. Mazur & Fatemeh Mirzamohammadi & Daniel Rotter & Hironori Hojo & Christian D. Castro & Nicha Tokavanich & Rushi Patel & Nicolas Govea & Tetsuya Enishi & , 2021. "Control of osteocyte dendrite formation by Sp7 and its target gene osteocrin," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    6. Lichun Ma & Sophia Heinrich & Limin Wang & Friederike L. Keggenhoff & Subreen Khatib & Marshonna Forgues & Michael Kelly & Stephen M. Hewitt & Areeba Saif & Jonathan M. Hernandez & Donna Mabry & Roman, 2022. "Multiregional single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    7. David J. Dittmar & Franziska Pielmeier & Nicholas Strieder & Alexander Fischer & Michael Herbst & Hanna Stanewsky & Niklas Wenzl & Eveline Röseler & Rüdiger Eder & Claudia Gebhard & Lucia Schwarzfisch, 2024. "Donor regulatory T cells rapidly adapt to recipient tissues to control murine acute graft-versus-host disease," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Keyong Sun & Runda Xu & Fuhai Ma & Naixue Yang & Yang Li & Xiaofeng Sun & Peng Jin & Wenzhe Kang & Lemei Jia & Jianping Xiong & Haitao Hu & Yantao Tian & Xun Lan, 2022. "scRNA-seq of gastric tumor shows complex intercellular interaction with an alternative T cell exhaustion trajectory," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Seong Eun Lee & Seongyeol Park & Shinae Yi & Na Rae Choi & Mi Ae Lim & Jae Won Chang & Ho-Ryun Won & Je Ryong Kim & Hye Mi Ko & Eun-Jae Chung & Young Joo Park & Sun Wook Cho & Hyeong Won Yu & June You, 2024. "Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Jeff Yat-Fai Chung & Philip Chiu-Tsun Tang & Max Kam-Kwan Chan & Vivian Weiwen Xue & Xiao-Ru Huang & Calvin Sze-Hang Ng & Dongmei Zhang & Kam-Tong Leung & Chun-Kwok Wong & Tin-Lap Lee & Eric W-F Lam &, 2023. "Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Fabian Peisker & Maurice Halder & James Nagai & Susanne Ziegler & Nadine Kaesler & Konrad Hoeft & Ronghui Li & Eric M. J. Bindels & Christoph Kuppe & Julia Moellmann & Michael Lehrke & Christian Stopp, 2022. "Mapping the cardiac vascular niche in heart failure," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    12. Timo N. Kohler & Joachim Jonghe & Anna L. Ellermann & Ayaka Yanagida & Michael Herger & Erin M. Slatery & Antonia Weberling & Clara Munger & Katrin Fischer & Carla Mulas & Alex Winkel & Connor Ross & , 2023. "Plakoglobin is a mechanoresponsive regulator of naive pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    13. Han Luo & Xuyang Xia & Li-Bin Huang & Hyunsu An & Minyuan Cao & Gyeong Dae Kim & Hai-Ning Chen & Wei-Han Zhang & Yang Shu & Xiangyu Kong & Zhixiang Ren & Pei-Heng Li & Yang Liu & Huairong Tang & Rongh, 2022. "Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Yan Tang & David J. Kwiatkowski & Elizabeth P. Henske, 2022. "Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    15. Jun Dai & Shuyu Zheng & Matías M. Falco & Jie Bao & Johanna Eriksson & Sanna Pikkusaari & Sofia Forstén & Jing Jiang & Wenyu Wang & Luping Gao & Fernando Perez-Villatoro & Olli Dufva & Khalid Saeed & , 2024. "Tracing back primed resistance in cancer via sister cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Ryuki Shimada & Yuzuru Kato & Naoki Takeda & Sayoko Fujimura & Kei-ichiro Yasunaga & Shingo Usuki & Hitoshi Niwa & Kimi Araki & Kei-ichiro Ishiguro, 2023. "STRA8–RB interaction is required for timely entry of meiosis in mouse female germ cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Cathy Pichol-Thievend & Oceane Anezo & Aafrin M. Pettiwala & Guillaume Bourmeau & Remi Montagne & Anne-Marie Lyne & Pierre-Olivier Guichet & Pauline Deshors & Alberto Ballestín & Benjamin Blanchard & , 2024. "VC-resist glioblastoma cell state: vessel co-option as a key driver of chemoradiation resistance," Nature Communications, Nature, vol. 15(1), pages 1-27, December.
    18. Susana I. Ramos & Zarmeen M. Mussa & Elisa N. Falk & Balagopal Pai & Bruno Giotti & Kimaada Allette & Peiwen Cai & Fumiko Dekio & Robert Sebra & Kristin G. Beaumont & Alexander M. Tsankov & Nadejda M., 2022. "An atlas of late prenatal human neurodevelopment resolved by single-nucleus transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    19. Xi Li & Alfonso Poire & Kang Jin Jeong & Dong Zhang & Tugba Yildiran Ozmen & Gang Chen & Chaoyang Sun & Gordon B. Mills, 2024. "C5aR1 inhibition reprograms tumor associated macrophages and reverses PARP inhibitor resistance in breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    20. Jingjing Qi & Hongxiang Sun & Yao Zhang & Zhengting Wang & Zhenzhen Xun & Ziyi Li & Xinyu Ding & Rujuan Bao & Liwen Hong & Wenqing Jia & Fei Fang & Hongzhi Liu & Lei Chen & Jie Zhong & Duowu Zou & Lia, 2022. "Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33982-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.