IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30864-w.html
   My bibliography  Save this article

Six-month follow-up of a booster dose of CoronaVac in two single-centre phase 2 clinical trials

Author

Listed:
  • Qianqian Xin

    (Sinovac Biotech)

  • Qianhui Wu

    (Fudan University, Key Laboratory of Public Health Safety, Ministry of Education)

  • Xinhua Chen

    (Fudan University, Key Laboratory of Public Health Safety, Ministry of Education)

  • Bihua Han

    (Hebei Provincial Center for Disease Control and Prevention)

  • Kai Chu

    (Jiangsu Provincial Center for Disease Control and Prevention)

  • Yan Song

    (Suining County Center for Disease Control and Prevention)

  • Hui Jin

    (Renqiu Center for Disease Control and Prevention)

  • Panpan Chen

    (Renqiu Center for Disease Control and Prevention)

  • Wanying Lu

    (Fudan University, Key Laboratory of Public Health Safety, Ministry of Education)

  • Tuantuan Yang

    (Sinovac Biotech)

  • Minjie Li

    (Hebei Provincial Center for Disease Control and Prevention)

  • Yuliang Zhao

    (Hebei Provincial Center for Disease Control and Prevention)

  • Hongxing Pan

    (Jiangsu Provincial Center for Disease Control and Prevention)

  • Hongjie Yu

    (Fudan University, Key Laboratory of Public Health Safety, Ministry of Education)

  • Lin Wang

    (Sinovac Life Sciences)

Abstract

Determining the duration of immunity induced by booster doses of CoronaVac is crucial for informing recommendations for booster regimens and adjusting immunization strategies. In two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials, immunogenicity and safety of four immunization regimens are assessed in adults aged 18 to 59 years and one immunization regimen in adults aged 60 years and older, respectively. Serious adverse events occurring within 6 months after booster doses are recorded as pre-specified secondary endpoints, geometric mean titres (GMTs) of neutralising antibodies one year after the 3-dose schedule immunization and 6 months after the booster doses are assessed as pre-specified exploratory endpoints, GMT fold-decreases in neutralization titres are assessed as post-hoc analyses. Neutralising antibody titres decline approximately 4-fold and 2.5-fold from day 28 to day 180 after third doses in adults aged 18–59 years of age and in adults aged 60 years and older, respectively. No safety concerns are identified during the follow-up period. There are increases in the magnitude and duration of humoral response with homologous booster doses of CoronaVac given 8 months after a primary two-dose immunization series, which could prolong protection and contribute to building our wall of population immunity. Trial number: NCT04352608 and NCT04383574.

Suggested Citation

  • Qianqian Xin & Qianhui Wu & Xinhua Chen & Bihua Han & Kai Chu & Yan Song & Hui Jin & Panpan Chen & Wanying Lu & Tuantuan Yang & Minjie Li & Yuliang Zhao & Hongxing Pan & Hongjie Yu & Lin Wang, 2022. "Six-month follow-up of a booster dose of CoronaVac in two single-centre phase 2 clinical trials," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30864-w
    DOI: 10.1038/s41467-022-30864-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30864-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30864-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sandile Cele & Laurelle Jackson & David S. Khoury & Khadija Khan & Thandeka Moyo-Gwete & Houriiyah Tegally & James Emmanuel San & Deborah Cromer & Cathrine Scheepers & Daniel G. Amoako & Farina Karim , 2022. "Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization," Nature, Nature, vol. 602(7898), pages 654-656, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taha Y. Taha & Irene P. Chen & Jennifer M. Hayashi & Takako Tabata & Keith Walcott & Gabriella R. Kimmerly & Abdullah M. Syed & Alison Ciling & Rahul K. Suryawanshi & Hannah S. Martin & Bryan H. Bach , 2023. "Rapid assembly of SARS-CoV-2 genomes reveals attenuation of the Omicron BA.1 variant through NSP6," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Hassen Kared & Asia-Sophia Wolf & Amin Alirezaylavasani & Anthony Ravussin & Guri Solum & Trung The Tran & Fridtjof Lund-Johansen & John Torgils Vaage & Lise Sofie Nissen-Meyer & Unni C. Nygaard & Ola, 2022. "Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Suman Das & Janmejay Singh & Heena Shaman & Balwant Singh & Anbalagan Anantharaj & Patil Sharanabasava & Rajesh Pandey & Rakesh Lodha & Anil Kumar Pandey & Guruprasad R. Medigeshi, 2022. "Pre-existing antibody levels negatively correlate with antibody titers after a single dose of BBV152 vaccination," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Seoryeong Park & Jaewon Choi & Yonghee Lee & Jinsung Noh & Namphil Kim & JinAh Lee & Geummi Cho & Sujeong Kim & Duck Kyun Yoo & Chang Kyung Kang & Pyoeng Gyun Choe & Nam Joong Kim & Wan Beom Park & Se, 2024. "An ancestral SARS-CoV-2 vaccine induces anti-Omicron variants antibodies by hypermutation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Meriem Bekliz & Kenneth Adea & Pauline Vetter & Christiane S. Eberhardt & Krisztina Hosszu-Fellous & Diem-Lan Vu & Olha Puhach & Manel Essaidi-Laziosi & Sophie Waldvogel-Abramowski & Caroline Stephan , 2022. "Neutralization capacity of antibodies elicited through homologous or heterologous infection or vaccination against SARS-CoV-2 VOCs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Raffaele Palladino & Michelangelo Mercogliano & Claudio Fiorilla & Alessandro Frangiosa & Sabrina Iodice & Stefano Sanduzzi Zamparelli & Emma Montella & Maria Triassi & Alessandro Sanduzzi Zamparelli, 2022. "Association between COVID-19 and Sick Leave for Healthcare Workers in a Large Academic Hospital in Southern Italy: An Observational Study," IJERPH, MDPI, vol. 19(15), pages 1-8, August.
    7. Alejandro Jara & Cristobal Cuadrado & Eduardo A. Undurraga & Christian García & Manuel Nájera & María Paz Bertoglia & Verónica Vergara & Jorge Fernández & Heriberto García-Escorza & Rafael Araos, 2023. "Effectiveness of the second COVID-19 booster against Omicron: a large-scale cohort study in Chile," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    8. Charles B. Stauft & Prabhuanand Selvaraj & Felice D’Agnillo & Clement A. Meseda & Shufeng Liu & Cyntia L. Pedro & Kotou Sangare & Christopher Z. Lien & Jerry P. Weir & Matthew F. Starost & Tony T. Wan, 2023. "Intranasal or airborne transmission-mediated delivery of an attenuated SARS-CoV-2 protects Syrian hamsters against new variants," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Payton A.-B. Weidenbacher & Mrinmoy Sanyal & Natalia Friedland & Shaogeng Tang & Prabhu S. Arunachalam & Mengyun Hu & Ozan S. Kumru & Mary Kate Morris & Jane Fontenot & Lisa Shirreff & Jonathan Do & Y, 2023. "A ferritin-based COVID-19 nanoparticle vaccine that elicits robust, durable, broad-spectrum neutralizing antisera in non-human primates," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Michal Canetti & Noam Barda & Mayan Gilboa & Victoria Indenbaum & Michal Mandelboim & Tal Gonen & Keren Asraf & Yael Weiss-Ottolenghi & Sharon Amit & Ram Doolman & Ella Mendelson & Dror Harats & Laure, 2022. "Immunogenicity and efficacy of fourth BNT162b2 and mRNA1273 COVID-19 vaccine doses; three months follow-up," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Tomohiro Takano & Takashi Sato & Ryutaro Kotaki & Saya Moriyama & Shuetsu Fukushi & Masahiro Shinoda & Kiyomi Kabasawa & Nagashige Shimada & Mio Kousaka & Yu Adachi & Taishi Onodera & Kazutaka Terahar, 2023. "Heterologous SARS-CoV-2 spike protein booster elicits durable and broad antibody responses against the receptor-binding domain," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    12. Chihiro Motozono & Mako Toyoda & Toong Seng Tan & Hiroshi Hamana & Yoshihiko Goto & Yoshiki Aritsu & Yusuke Miyashita & Hiroyuki Oshiumi & Kimitoshi Nakamura & Seiji Okada & Keiko Udaka & Mizuki Kitam, 2022. "The SARS-CoV-2 Omicron BA.1 spike G446S mutation potentiates antiviral T-cell recognition," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Laurent Renia & Yun Shan Goh & Angeline Rouers & Nina Bert & Wan Ni Chia & Jean-Marc Chavatte & Siew‐Wai Fong & Zi Wei Chang & Nicole Ziyi Zhuo & Matthew Zirui Tay & Yi-Hao Chan & Chee Wah Tan & Nicho, 2022. "Lower vaccine-acquired immunity in the elderly population following two-dose BNT162b2 vaccination is alleviated by a third vaccine dose," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. G. Tuba Barut & Nico Joel Halwe & Adriano Taddeo & Jenna N. Kelly & Jacob Schön & Nadine Ebert & Lorenz Ulrich & Christelle Devisme & Silvio Steiner & Bettina Salome Trüeb & Bernd Hoffmann & Inês Bere, 2022. "The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    15. Karina A. Pasquevich & Lorena M. Coria & Ana Ceballos & Bianca Mazzitelli & Juan Manuel Rodriguez & Agostina Demaría & Celeste Pueblas Castro & Laura Bruno & Lucas Saposnik & Melina Salvatori & August, 2023. "Safety and immunogenicity of a SARS-CoV-2 Gamma variant RBD-based protein adjuvanted vaccine used as booster in healthy adults," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Rebecca Urschel & Saskia Bronder & Verena Klemis & Stefanie Marx & Franziska Hielscher & Amina Abu-Omar & Candida Guckelmus & Sophie Schneitler & Christina Baum & Sören L. Becker & Barbara C. Gärtner , 2024. "SARS-CoV-2-specific cellular and humoral immunity after bivalent BA.4/5 COVID-19-vaccination in previously infected and non-infected individuals," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Xuanming Guo & Jianli Cao & Jian-Piao Cai & Jiayan Wu & Jiangang Huang & Pallavi Asthana & Sheung Kin Ken Wong & Zi-Wei Ye & Susma Gurung & Yijing Zhang & Sheng Wang & Zening Wang & Xin Ge & Hiu Yee K, 2022. "Control of SARS-CoV-2 infection by MT1-MMP-mediated shedding of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    18. Lei Wang & Zhiwei Wu & Zhifang Ying & Minjie Li & Yuansheng Hu & Qun Shu & Jing Li & Huixian Wang & Hengming Zhang & Wenbin Jiao & Lin Wang & Yuliang Zhao & Qiang Gao, 2022. "Safety and immunogenicity following a homologous booster dose of CoronaVac in children and adolescents," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Nina Breinholt Stærke & Joanne Reekie & Henrik Nielsen & Thomas Benfield & Lothar Wiese & Lene Surland Knudsen & Mette Brouw Iversen & Kasper Iversen & Kamille Fogh & Jacob Bodilsen & Maria Ruwald Juh, 2022. "Levels of SARS-CoV-2 antibodies among fully vaccinated individuals with Delta or Omicron variant breakthrough infections," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Deborah Cromer & Megan Steain & Arnold Reynaldi & Timothy E. Schlub & Shanchita R. Khan & Sarah C. Sasson & Stephen J. Kent & David S. Khoury & Miles P. Davenport, 2023. "Predicting vaccine effectiveness against severe COVID-19 over time and against variants: a meta-analysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30864-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.