IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30861-z.html
   My bibliography  Save this article

Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells

Author

Listed:
  • Eishiro Mizukoshi

    (Kanazawa University)

  • Hidetoshi Nakagawa

    (Kanazawa University)

  • Toshikatsu Tamai

    (Kanazawa University)

  • Masaaki Kitahara

    (Kanazawa University)

  • Kazumi Fushimi

    (Kanazawa University)

  • Kouki Nio

    (Kanazawa University)

  • Takeshi Terashima

    (Kanazawa University)

  • Noriho Iida

    (Kanazawa University)

  • Kuniaki Arai

    (Kanazawa University)

  • Tatsuya Yamashita

    (Kanazawa University)

  • Taro Yamashita

    (Kanazawa University)

  • Yoshio Sakai

    (Kanazawa University)

  • Masao Honda

    (Kanazawa University)

  • Shuichi Kaneko

    (Kanazawa University)

Abstract

The behaviors and fates of immune cells in cancer patients, such as dysfunction and stem-like states leading to memory formation in T cells, are in intense focus of investigation. Here we show, by post hoc analysis of peripheral blood lymphocytes of hepatocellular carcinoma patients previously undergoing vaccination with tumour-associated antigen-derived peptides in our clinical trials (registration numbers UMIN000003511, UMIN000004540, UMIN000005677, UMIN000003514 and UMIN000005678), that induced peptide-specific T cell responses may persist beyond 10 years following vaccination. Tracking TCR clonotypes at the single cell level reveals in two patients that peptide-specific long-lasting CD8+ T cells acquire an effector memory phenotype that associates with cell cycle-related genes (CCNA2 and CDK1), and are characterized by high expression of IL7R, SELL, and NOSIP along with a later stage promotion of the AP-1 transcription factor network (5 years or more past vaccination). We conclude that effective anti-tumor immunity is governed by potentially proliferative memory T cells, specific to cancer antigens.

Suggested Citation

  • Eishiro Mizukoshi & Hidetoshi Nakagawa & Toshikatsu Tamai & Masaaki Kitahara & Kazumi Fushimi & Kouki Nio & Takeshi Terashima & Noriho Iida & Kuniaki Arai & Tatsuya Yamashita & Taro Yamashita & Yoshio, 2022. "Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30861-z
    DOI: 10.1038/s41467-022-30861-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30861-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30861-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rachel C. Lynn & Evan W. Weber & Elena Sotillo & David Gennert & Peng Xu & Zinaida Good & Hima Anbunathan & John Lattin & Robert Jones & Victor Tieu & Surya Nagaraja & Jeffrey Granja & Charles F. A. B, 2019. "c-Jun overexpression in CAR T cells induces exhaustion resistance," Nature, Nature, vol. 576(7786), pages 293-300, December.
    2. Yannick Simoni & Etienne Becht & Michael Fehlings & Chiew Yee Loh & Si-Lin Koo & Karen Wei Weng Teng & Joe Poh Sheng Yeong & Rahul Nahar & Tong Zhang & Hassen Kared & Kaibo Duan & Nicholas Ang & Micha, 2018. "Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates," Nature, Nature, vol. 557(7706), pages 575-579, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaofeng Liao & Wenxue Li & Hongyue Zhou & Barani Kumar Rajendran & Ao Li & Jingjing Ren & Yi Luan & David A. Calderwood & Benjamin Turk & Wenwen Tang & Yansheng Liu & Dianqing Wu, 2024. "The CUL5 E3 ligase complex negatively regulates central signaling pathways in CD8+ T cells," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Raymond Hall Yip Louie & Curtis Cai & Jerome Samir & Mandeep Singh & Ira W. Deveson & James M. Ferguson & Timothy G. Amos & Helen Marie McGuire & Kavitha Gowrishankar & Thiruni Adikari & Robert Balder, 2023. "CAR+ and CAR− T cells share a differentiation trajectory into an NK-like subset after CD19 CAR T cell infusion in patients with B cell malignancies," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Judit Svensson-Arvelund & Sara Cuadrado-Castano & Gvantsa Pantsulaia & Kristy Kim & Mark Aleynick & Linda Hammerich & Ranjan Upadhyay & Michael Yellin & Henry Marsh & Daniel Oreper & Suchit Jhunjhunwa, 2022. "Expanding cross-presenting dendritic cells enhances oncolytic virotherapy and is critical for long-term anti-tumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Veronika Bandara & Jade Foeng & Batjargal Gundsambuu & Todd S. Norton & Silvana Napoli & Dylan J. McPeake & Timona S. Tyllis & Elaheh Rohani-Rad & Caitlin Abbott & Stuart J. Mills & Lih Y. Tan & Emma , 2023. "Pre-clinical validation of a pan-cancer CAR-T cell immunotherapy targeting nfP2X7," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Jani Huuhtanen & Liang Chen & Emmi Jokinen & Henna Kasanen & Tapio Lönnberg & Anna Kreutzman & Katriina Peltola & Micaela Hernberg & Chunlin Wang & Cassian Yee & Harri Lähdesmäki & Mark M. Davis & Sat, 2022. "Evolution and modulation of antigen-specific T cell responses in melanoma patients," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Hong Sheng Quah & Elaine Yiqun Cao & Lisda Suteja & Constance H. Li & Hui Sun Leong & Fui Teen Chong & Shilpi Gupta & Camille Arcinas & John F. Ouyang & Vivian Ang & Teja Celhar & Yunqian Zhao & Hui C, 2023. "Single cell analysis in head and neck cancer reveals potential immune evasion mechanisms during early metastasis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    7. Kwasi Adu-Berchie & Joshua M. Brockman & Yutong Liu & Tania W. To & David K. Y. Zhang & Alexander J. Najibi & Yoav Binenbaum & Alexander Stafford & Nikolaos Dimitrakakis & Miguel C. Sobral & Maxence O, 2023. "Adoptive T cell transfer and host antigen-presenting cell recruitment with cryogel scaffolds promotes long-term protection against solid tumors," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Bogang Wu & Xiaowen Zhang & Huai-Chin Chiang & Haihui Pan & Bin Yuan & Payal Mitra & Leilei Qi & Hayk Simonyan & Colin N. Young & Eric Yvon & Yanfen Hu & Nu Zhang & Rong Li, 2022. "RNA polymerase II pausing factor NELF in CD8+ T cells promotes antitumor immunity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Meiyan Qi & Yun Xia & Yanjun Wu & Zhuo Zhang & Xinyu Wang & Liying Lu & Cheng Dai & Yanan Song & Keying Xu & Weiwei Ji & Lixing Zhan, 2022. "Lin28B-high breast cancer cells promote immune suppression in the lung pre-metastatic niche via exosomes and support cancer progression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    10. Jeppe Sejerø Holm & Samuel A. Funt & Annie Borch & Kamilla Kjærgaard Munk & Anne-Mette Bjerregaard & James L. Reading & Colleen Maher & Ashley Regazzi & Phillip Wong & Hikmat Al-Ahmadie & Gopa Iyer & , 2022. "Neoantigen-specific CD8 T cell responses in the peripheral blood following PD-L1 blockade might predict therapy outcome in metastatic urothelial carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    11. Cirino Botta & Cristina Perez & Marta Larrayoz & Noemi Puig & Maria-Teresa Cedena & Rosalinda Termini & Ibai Goicoechea & Sara Rodriguez & Aintzane Zabaleta & Aitziber Lopez & Sarai Sarvide & Laura Bl, 2023. "Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Bo Wang & Jing Chen & Julia S. Caserto & Xi Wang & Minglin Ma, 2022. "An in situ hydrogel-mediated chemo-immunometabolic cancer therapy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Silvia Tiberti & Carlotta Catozzi & Ottavio Croci & Mattia Ballerini & Danilo Cagnina & Chiara Soriani & Caterina Scirgolea & Zheng Gong & Jiatai He & Angeli D. Macandog & Amir Nabinejad & Carina B. N, 2022. "GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome," Nature Communications, Nature, vol. 13(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30861-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.