IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v571y2019i7764d10.1038_s41586-019-1334-9.html
   My bibliography  Save this article

Tracking the precession of single nuclear spins by weak measurements

Author

Listed:
  • K. S. Cujia

    (ETH Zurich)

  • J. M. Boss

    (ETH Zurich)

  • K. Herb

    (ETH Zurich)

  • J. Zopes

    (ETH Zurich)

  • C. L. Degen

    (ETH Zurich)

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for analysing the structure and function of molecules, and for performing three-dimensional imaging of their spin densities. At the heart of NMR spectrometers is the detection of electromagnetic radiation, in the form of a free induction decay signal1, generated by nuclei precessing around an applied magnetic field. Whereas conventional NMR requires signals from 1012 or more nuclei, recent advances in sensitive magnetometry2,3 have dramatically lowered the required number of nuclei to a level where a few or even individual nuclear spins can be detected4–6. It is unclear whether continuous detection of the free induction decay can still be applied at the single-spin level, or whether quantum back-action (the effect that a detector has on the measurement itself) modifies or suppresses the NMR response. Here we report the tracking of single nuclear spin precession using periodic weak measurements7–9. Our experimental system consists of nuclear spins in diamond that are weakly interacting with the electronic spin of a nearby nitrogen vacancy centre, acting as an optically readable meter qubit. We observe and minimize two important effects of quantum back-action: measurement-induced decoherence10 and frequency synchronization with the sampling clock11,12. We use periodic weak measurements to demonstrate sensitive, high-resolution NMR spectroscopy of multiple nuclear spins with a priori unknown frequencies. Our method may provide a useful route to single-molecule NMR13,14 at atomic resolution.

Suggested Citation

  • K. S. Cujia & J. M. Boss & K. Herb & J. Zopes & C. L. Degen, 2019. "Tracking the precession of single nuclear spins by weak measurements," Nature, Nature, vol. 571(7764), pages 230-233, July.
  • Handle: RePEc:nat:nature:v:571:y:2019:i:7764:d:10.1038_s41586-019-1334-9
    DOI: 10.1038/s41586-019-1334-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1334-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1334-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Meinel & Vadim Vorobyov & Ping Wang & Boris Yavkin & Mathias Pfender & Hitoshi Sumiya & Shinobu Onoda & Junichi Isoya & Ren-Bao Liu & J. Wrachtrup, 2022. "Quantum nonlinear spectroscopy of single nuclear spins," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Durga Bhaktavatsala Rao Dasari & Sen Yang & Arnab Chakrabarti & Amit Finkler & Gershon Kurizki & Jörg Wrachtrup, 2022. "Anti-Zeno purification of spin baths by quantum probe measurements," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Jan Kretschmer & Tomáš David & Martin Dračínský & Ondřej Socha & Daniel Jirak & Martin Vít & Radek Jurok & Martin Kuchař & Ivana Císařová & Miloslav Polasek, 2022. "Paramagnetic encoding of molecules," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. K. S. Cujia & K. Herb & J. Zopes & J. M. Abendroth & C. L. Degen, 2022. "Parallel detection and spatial mapping of large nuclear spin clusters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:571:y:2019:i:7764:d:10.1038_s41586-019-1334-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.