IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30595-y.html
   My bibliography  Save this article

The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands

Author

Listed:
  • Jingjing Wang

    (ShanghaiTech University)

  • Meng Wu

    (ShanghaiTech University)

  • Zhangcheng Chen

    (Chinese Academy of Sciences)

  • Lijie Wu

    (ShanghaiTech University)

  • Tian Wang

    (ShanghaiTech University
    ShanghaiTech University)

  • Dongmei Cao

    (Chinese Academy of Sciences)

  • Huan Wang

    (ShanghaiTech University)

  • Shenhui Liu

    (ShanghaiTech University
    ShanghaiTech University)

  • Yueming Xu

    (ShanghaiTech University)

  • Fei Li

    (ShanghaiTech University)

  • Junlin Liu

    (ShanghaiTech University)

  • Na Chen

    (ShanghaiTech University)

  • Suwen Zhao

    (ShanghaiTech University
    ShanghaiTech University)

  • Jianjun Cheng

    (ShanghaiTech University)

  • Sheng Wang

    (Chinese Academy of Sciences)

  • Tian Hua

    (ShanghaiTech University
    ShanghaiTech University)

Abstract

Muscarinic acetylcholine receptors (mAChRs) respond to the neurotransmitter acetylcholine and play important roles in human nervous system. Muscarinic receptor 4 (M4R) is a promising drug target for treating neurological and mental disorders, such as Alzheimer’s disease and schizophrenia. However, the lack of understanding on M4R’s activation by subtype selective agonists hinders its therapeutic applications. Here, we report the structural characterization of M4R selective allosteric agonist, compound-110, as well as agonist iperoxo and positive allosteric modulator LY2119620. Our cryo-electron microscopy structures of compound-110, iperoxo or iperoxo-LY2119620 bound M4R-Gi complex reveal their different interaction modes and activation mechanisms of M4R, and the M4R-ip-LY-Gi structure validates the cooperativity between iperoxo and LY2119620 on M4R. Through the comparative structural and pharmacological analysis, compound-110 mostly occupies the allosteric binding pocket with vertical binding pose. Such a binding and activation mode facilitates its allostersic selectivity and agonist profile. In addition, in our schizophrenia-mimic mouse model study, compound-110 shows antipsychotic activity with low extrapyramidal side effects. Thus, this study provides structural insights to develop next-generation antipsychotic drugs selectively targeting on mAChRs subtypes.

Suggested Citation

  • Jingjing Wang & Meng Wu & Zhangcheng Chen & Lijie Wu & Tian Wang & Dongmei Cao & Huan Wang & Shenhui Liu & Yueming Xu & Fei Li & Junlin Liu & Na Chen & Suwen Zhao & Jianjun Cheng & Sheng Wang & Tian H, 2022. "The unconventional activation of the muscarinic acetylcholine receptor M4R by diverse ligands," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30595-y
    DOI: 10.1038/s41467-022-30595-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30595-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30595-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David M. Thal & Bingfa Sun & Dan Feng & Vindhya Nawaratne & Katie Leach & Christian C. Felder & Mark G. Bures & David A. Evans & William I. Weis & Priti Bachhawat & Tong Sun Kobilka & Patrick M. Sexto, 2016. "Crystal structures of the M1 and M4 muscarinic acetylcholine receptors," Nature, Nature, vol. 531(7594), pages 335-340, March.
    2. Zhao Wang & Corey F. Hryc & Benjamin Bammes & Pavel V. Afonine & Joanita Jakana & Dong-Hua Chen & Xiangan Liu & Matthew L. Baker & Cheng Kao & Steven J. Ludtke & Michael F. Schmid & Paul D. Adams & Wa, 2014. "An atomic model of brome mosaic virus using direct electron detection and real-space optimization," Nature Communications, Nature, vol. 5(1), pages 1-12, December.
    3. Antoine Koehl & Hongli Hu & Shoji Maeda & Yan Zhang & Qianhui Qu & Joseph M. Paggi & Naomi R. Latorraca & Daniel Hilger & Roger Dawson & Hugues Matile & Gebhard F. X. Schertler & Sebastien Granier & W, 2018. "Structure of the µ-opioid receptor–Gi protein complex," Nature, Nature, vol. 558(7711), pages 547-552, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wessel A. C. Burger & Vi Pham & Ziva Vuckovic & Alexander S. Powers & Jesse I. Mobbs & Yianni Laloudakis & Alisa Glukhova & Denise Wootten & Andrew B. Tobin & Patrick M. Sexton & Steven M. Paul & Chri, 2023. "Xanomeline displays concomitant orthosteric and allosteric binding modes at the M4 mAChR," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Yang & Hye Jin Kang & Ruogu Gao & Jingjing Wang & Gye Won Han & Jeffrey F. DiBerto & Lijie Wu & Jiahui Tong & Lu Qu & Yiran Wu & Ryan Pileski & Xuemei Li & Xuejun Cai Zhang & Suwen Zhao & Terry K, 2023. "Structural insights into the human niacin receptor HCA2-Gi signalling complex," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shota Suzuki & Kotaro Tanaka & Kouki Nishikawa & Hiroshi Suzuki & Atsunori Oshima & Yoshinori Fujiyoshi, 2023. "Structural basis of hydroxycarboxylic acid receptor signaling mechanisms through ligand binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Aika Iwama & Ryoji Kise & Hiroaki Akasaka & Fumiya K. Sano & Hidetaka S. Oshima & Asuka Inoue & Wataru Shihoya & Osamu Nureki, 2024. "Structure and dynamics of the pyroglutamylated RF-amide peptide QRFP receptor GPR103," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Hiroaki Akasaka & Tatsuki Tanaka & Fumiya K. Sano & Yuma Matsuzaki & Wataru Shihoya & Osamu Nureki, 2022. "Structure of the active Gi-coupled human lysophosphatidic acid receptor 1 complexed with a potent agonist," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Andrew J. Y. Jones & Thomas H. Harman & Matthew Harris & Oliver E. Lewis & Graham Ladds & Daniel Nietlispach, 2024. "Binding kinetics drive G protein subtype selectivity at the β1-adrenergic receptor," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Xueqian Peng & Linlin Yang & Zixuan Liu & Siyi Lou & Shiliu Mei & Meiling Li & Zhong Chen & Haitao Zhang, 2022. "Structural basis for recognition of antihistamine drug by human histamine receptor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Tamaki Izume & Ryo Kawahara & Akiharu Uwamizu & Luying Chen & Shun Yaginuma & Jumpei Omi & Hiroki Kawana & Fengjue Hou & Fumiya K. Sano & Tatsuki Tanaka & Kazuhiro Kobayashi & Hiroyuki H. Okamoto & Yo, 2024. "Structural basis for lysophosphatidylserine recognition by GPR34," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Shun Kaneko & Shunsuke Imai & Tomomi Uchikubo-Kamo & Tamao Hisano & Nobuaki Asao & Mikako Shirouzu & Ichio Shimada, 2024. "Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Xuan Zhang & Guibing Liu & Ya-Ni Zhong & Ru Zhang & Chuan-Cheng Yang & Canyang Niu & Xuanyu Pu & Jingjing Sun & Tianyao Zhang & Lejin Yang & Chao Zhang & Xiu Li & Xinyuan Shen & Peng Xiao & Jin-Peng S, 2024. "Structural basis of ligand recognition and activation of the histamine receptor family," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Chaehee Park & Jinuk Kim & Seung-Bum Ko & Yeol Kyo Choi & Hyeongseop Jeong & Hyeonuk Woo & Hyunook Kang & Injin Bang & Sang Ah Kim & Tae-Young Yoon & Chaok Seok & Wonpil Im & Hee-Jung Choi, 2022. "Structural basis of neuropeptide Y signaling through Y1 receptor," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Geng Chen & Jun Xu & Asuka Inoue & Maximilian F. Schmidt & Chen Bai & Qiuyuan Lu & Peter Gmeiner & Zheng Liu & Yang Du, 2022. "Activation and allosteric regulation of the orphan GPR88-Gi1 signaling complex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Jun Yu & Amit Kumar & Xuefeng Zhang & Charlotte Martin & Kevin Van holsbeeck & Pierre Raia & Antoine Koehl & Toon Laeremans & Jan Steyaert & Aashish Manglik & Steven Ballet & Andreas Boland & Miriam S, 2024. "Structural basis of μ-opioid receptor targeting by a nanobody antagonist," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Jie Yin & Yanyong Kang & Aaron P. McGrath & Karen Chapman & Megan Sjodt & Eiji Kimura & Atsutoshi Okabe & Tatsuki Koike & Yuhei Miyanohana & Yuji Shimizu & Rameshu Rallabandi & Peng Lian & Xiaochen Ba, 2022. "Molecular mechanism of the wake-promoting agent TAK-925," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    14. Jinkang Shen & Dongqi Zhang & Yao Fu & Anqi Chen & Xiaoli Yang & Haitao Zhang, 2022. "Cryo-EM structures of human bradykinin receptor-Gq proteins complexes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Wessel A. C. Burger & Vi Pham & Ziva Vuckovic & Alexander S. Powers & Jesse I. Mobbs & Yianni Laloudakis & Alisa Glukhova & Denise Wootten & Andrew B. Tobin & Patrick M. Sexton & Steven M. Paul & Chri, 2023. "Xanomeline displays concomitant orthosteric and allosteric binding modes at the M4 mAChR," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Jun Xu & Qinggong Wang & Harald Hübner & Yunfei Hu & Xiaogang Niu & Haoqing Wang & Shoji Maeda & Asuka Inoue & Yuyong Tao & Peter Gmeiner & Yang Du & Changwen Jin & Brian K. Kobilka, 2023. "Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30595-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.