IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30195-w.html
   My bibliography  Save this article

SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters

Author

Listed:
  • Wei Qiao

    (the University of Hong Kong
    the University of Hong Kong-Shenzhen Hospital
    the University of Hong Kong)

  • Hui En Lau

    (the University of Hong Kong)

  • Huizhi Xie

    (the University of Hong Kong
    the University of Hong Kong-Shenzhen Hospital)

  • Vincent Kwok-Man Poon

    (The University of Hong Kong
    Hong Kong Science and Technology Park)

  • Chris Chung-Sing Chan

    (The University of Hong Kong
    Hong Kong Science and Technology Park)

  • Hin Chu

    (The University of Hong Kong
    Hong Kong Science and Technology Park
    The University of Hong Kong-Shenzhen Hospital)

  • Shuofeng Yuan

    (The University of Hong Kong
    Hong Kong Science and Technology Park
    The University of Hong Kong-Shenzhen Hospital)

  • Terrence Tsz-Tai Yuen

    (The University of Hong Kong)

  • Kenn Ka-Heng Chik

    (The University of Hong Kong
    Hong Kong Science and Technology Park)

  • Jessica Oi-Ling Tsang

    (The University of Hong Kong
    Hong Kong Science and Technology Park)

  • Chris Chun-Yiu Chan

    (The University of Hong Kong)

  • Jian-Piao Cai

    (The University of Hong Kong)

  • Cuiting Luo

    (The University of Hong Kong)

  • Kwok-Yung Yuen

    (The University of Hong Kong
    Hong Kong Science and Technology Park
    The University of Hong Kong-Shenzhen Hospital
    Academician Workstation of Hainan Province of Hainan Medical University, and Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases)

  • Kenneth Man-Chee Cheung

    (the University of Hong Kong
    the University of Hong Kong-Shenzhen Hospital)

  • Jasper Fuk-Woo Chan

    (The University of Hong Kong
    Hong Kong Science and Technology Park
    The University of Hong Kong-Shenzhen Hospital
    Academician Workstation of Hainan Province of Hainan Medical University, and Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases)

  • Kelvin Wai-Kwok Yeung

    (the University of Hong Kong
    the University of Hong Kong-Shenzhen Hospital)

Abstract

Extrapulmonary complications of different organ systems have been increasingly recognized in patients with severe or chronic Coronavirus Disease 2019 (COVID-19). However, limited information on the skeletal complications of COVID-19 is known, even though inflammatory diseases of the respiratory tract have been known to perturb bone metabolism and cause pathological bone loss. In this study, we characterize the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bone metabolism in an established golden Syrian hamster model for COVID-19. SARS-CoV-2 causes significant multifocal loss of bone trabeculae in the long bones and lumbar vertebrae of all infected hamsters. Moreover, we show that the bone loss is associated with SARS-CoV-2-induced cytokine dysregulation, as the circulating pro-inflammatory cytokines not only upregulate osteoclastic differentiation in bone tissues, but also trigger an amplified pro-inflammatory cascade in the skeletal tissues to augment their pro-osteoclastogenesis effect. Our findings suggest that pathological bone loss may be a neglected complication which warrants more extensive investigations during the long-term follow-up of COVID-19 patients. The benefits of potential prophylactic and therapeutic interventions against pathological bone loss should be further evaluated.

Suggested Citation

  • Wei Qiao & Hui En Lau & Huizhi Xie & Vincent Kwok-Man Poon & Chris Chung-Sing Chan & Hin Chu & Shuofeng Yuan & Terrence Tsz-Tai Yuen & Kenn Ka-Heng Chik & Jessica Oi-Ling Tsang & Chris Chun-Yiu Chan &, 2022. "SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30195-w
    DOI: 10.1038/s41467-022-30195-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30195-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30195-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuofeng Yuan & Xin Yin & Xiangzhi Meng & Jasper Fuk-Woo Chan & Zi-Wei Ye & Laura Riva & Lars Pache & Chris Chun-Yiu Chan & Pok-Man Lai & Chris Chung-Sing Chan & Vincent Kwok-Man Poon & Andrew Chak-Yi, 2021. "Clofazimine broadly inhibits coronaviruses including SARS-CoV-2," Nature, Nature, vol. 593(7859), pages 418-423, May.
    2. Geraldine Nouailles & Emanuel Wyler & Peter Pennitz & Dylan Postmus & Daria Vladimirova & Julia Kazmierski & Fabian Pott & Kristina Dietert & Michael Muelleder & Vadim Farztdinov & Benedikt Obermayer , 2021. "Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Julia R. Port & Claude Kwe Yinda & Irene Offei Owusu & Myndi Holbrook & Robert Fischer & Trenton Bushmaker & Victoria A. Avanzato & Jonathan E. Schulz & Craig Martens & Neeltje van Doremalen & Chad S., 2021. "SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Sunshine & Andreas S. Puschnik & Joseph M. Replogle & Matthew T. Laurie & Jamin Liu & Beth Shoshana Zha & James K. Nuñez & Janie R. Byrum & Aidan H. McMorrow & Matthew B. Frieman & Juliane Winkle, 2023. "Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Laura Heydemann & Małgorzata Ciurkiewicz & Georg Beythien & Kathrin Becker & Klaus Schughart & Stephanie Stanelle-Bertram & Berfin Schaumburg & Nancy Mounogou-Kouassi & Sebastian Beck & Martin Zickler, 2023. "Hamster model for post-COVID-19 alveolar regeneration offers an opportunity to understand post-acute sequelae of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Bruno A. Rodriguez-Rodriguez & Grace O. Ciabattoni & Ralf Duerr & Ana M. Valero-Jimenez & Stephen T. Yeung & Keaton M. Crosse & Austin R. Schinlever & Lucie Bernard-Raichon & Joaquin Rodriguez Galvan , 2023. "A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Ronghui Liang & Zi-Wei Ye & Zhenzhi Qin & Yubin Xie & Xiaomeng Yang & Haoran Sun & Qiaohui Du & Peng Luo & Kaiming Tang & Bodan Hu & Jianli Cao & Xavier Hoi-Leong Wong & Guang-Sheng Ling & Hin Chu & J, 2024. "PMI-controlled mannose metabolism and glycosylation determines tissue tolerance and virus fitness," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Bo Qin & Ziheng Li & Kaiming Tang & Tongyun Wang & Yubin Xie & Sylvain Aumonier & Meitian Wang & Shuofeng Yuan & Sheng Cui, 2023. "Identification of the SARS-unique domain of SARS-CoV-2 as an antiviral target," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Weizhong Li & Tao Wang & Arunraj M. Rajendrakumar & Gyanada Acharya & Zizhen Miao & Berin P. Varghese & Hailiang Yu & Bibek Dhakal & Tanya LeRoith & Athira Karunakaran & Wenbin Tuo & Xiaoping Zhu, 2023. "An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Julia R. Port & Claude Kwe Yinda & Jade C. Riopelle & Zachary A. Weishampel & Taylor A. Saturday & Victoria A. Avanzato & Jonathan E. Schulz & Myndi G. Holbrook & Kent Barbian & Rose Perry-Gottschalk , 2023. "Infection- or AZD1222 vaccine-mediated immunity reduces SARS-CoV-2 transmission but increases Omicron competitiveness in hamsters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Leiping Zeng & Yanxia Liu & Xammy Huu Nguyenla & Timothy R. Abbott & Mengting Han & Yanyu Zhu & Augustine Chemparathy & Xueqiu Lin & Xinyi Chen & Haifeng Wang & Draven A. Rane & Jordan M. Spatz & Sake, 2022. "Broad-spectrum CRISPR-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30195-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.