IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25156-8.html
   My bibliography  Save this article

SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters

Author

Listed:
  • Julia R. Port

    (National Institutes of Health)

  • Claude Kwe Yinda

    (National Institutes of Health)

  • Irene Offei Owusu

    (National Institutes of Health)

  • Myndi Holbrook

    (National Institutes of Health)

  • Robert Fischer

    (National Institutes of Health)

  • Trenton Bushmaker

    (National Institutes of Health
    Montana State University)

  • Victoria A. Avanzato

    (National Institutes of Health)

  • Jonathan E. Schulz

    (National Institutes of Health)

  • Craig Martens

    (National Institutes of Health)

  • Neeltje van Doremalen

    (National Institutes of Health)

  • Chad S. Clancy

    (National Institutes of Health)

  • Vincent J. Munster

    (National Institutes of Health)

Abstract

Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.

Suggested Citation

  • Julia R. Port & Claude Kwe Yinda & Irene Offei Owusu & Myndi Holbrook & Robert Fischer & Trenton Bushmaker & Victoria A. Avanzato & Jonathan E. Schulz & Craig Martens & Neeltje van Doremalen & Chad S., 2021. "SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25156-8
    DOI: 10.1038/s41467-021-25156-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25156-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25156-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia R. Port & Claude Kwe Yinda & Jade C. Riopelle & Zachary A. Weishampel & Taylor A. Saturday & Victoria A. Avanzato & Jonathan E. Schulz & Myndi G. Holbrook & Kent Barbian & Rose Perry-Gottschalk , 2023. "Infection- or AZD1222 vaccine-mediated immunity reduces SARS-CoV-2 transmission but increases Omicron competitiveness in hamsters," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Weizhong Li & Tao Wang & Arunraj M. Rajendrakumar & Gyanada Acharya & Zizhen Miao & Berin P. Varghese & Hailiang Yu & Bibek Dhakal & Tanya LeRoith & Athira Karunakaran & Wenbin Tuo & Xiaoping Zhu, 2023. "An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Wei Qiao & Hui En Lau & Huizhi Xie & Vincent Kwok-Man Poon & Chris Chung-Sing Chan & Hin Chu & Shuofeng Yuan & Terrence Tsz-Tai Yuen & Kenn Ka-Heng Chik & Jessica Oi-Ling Tsang & Chris Chun-Yiu Chan &, 2022. "SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Bruno A. Rodriguez-Rodriguez & Grace O. Ciabattoni & Ralf Duerr & Ana M. Valero-Jimenez & Stephen T. Yeung & Keaton M. Crosse & Austin R. Schinlever & Lucie Bernard-Raichon & Joaquin Rodriguez Galvan , 2023. "A neonatal mouse model characterizes transmissibility of SARS-CoV-2 variants and reveals a role for ORF8," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25156-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.