IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30121-0.html
   My bibliography  Save this article

Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle

Author

Listed:
  • Shuo Li

    (Shanghai University)

  • Kun Liu

    (Tianjin Normal University)

  • Xue-Chen Feng

    (Tianjin Normal University)

  • Zhao-Xian Li

    (Tianjin Normal University)

  • Zhi-Yuan Zhang

    (Tianjin Normal University)

  • Bin Wang

    (Tianjin Normal University)

  • Minjie Li

    (Shanghai University)

  • Yue-Ling Bai

    (Shanghai University)

  • Lei Cui

    (Shanghai University)

  • Chunju Li

    (Shanghai University
    Tianjin Normal University)

Abstract

We presented an effective and universal strategy for the improvement of luminophore’s solid-state emission, i.e., macrocyclization-induced emission enhancement (MIEE), by linking luminophores through C(sp3) bridges to give a macrocycle. Benzothiadiazole-based macrocycle (BT-LC) has been synthesized by a one-step condensation of the monomer 4,7-bis(2,4-dimethoxyphenyl)−2,1,3-benzothiadiazole (BT-M) with paraformaldehyde, catalyzed by Lewis acid. In comparison with the monomer, macrocycle BT-LC produces much more intense fluorescence in the solid state (ΦPL = 99%) and exhibits better device performance in the application of OLEDs. Single-crystal analysis and theoretical simulations reveal that the monomer can return to the ground state through a minimum energy crossing point (MECPS1/S0), resulting in the decrease of fluorescence efficiency. For the macrocycle, its inherent structural rigidity prohibits this non-radiative relaxation process and promotes the radiative relaxation, therefore emitting intense fluorescence. More significantly, MIEE strategy has good universality that several macrocycles with different luminophores also display emission improvement.

Suggested Citation

  • Shuo Li & Kun Liu & Xue-Chen Feng & Zhao-Xian Li & Zhi-Yuan Zhang & Bin Wang & Minjie Li & Yue-Ling Bai & Lei Cui & Chunju Li, 2022. "Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30121-0
    DOI: 10.1038/s41467-022-30121-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30121-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30121-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huimin Ding & Jian Li & Guohua Xie & Guiqing Lin & Rufan Chen & Zhengkang Peng & Chuluo Yang & Baoshan Wang & Junliang Sun & Cheng Wang, 2018. "An AIEgen-based 3D covalent organic framework for white light-emitting diodes," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    2. Jinyang Zhao & Yongli Yan & Zhenhua Gao & Yuxiang Du & Haiyun Dong & Jiannian Yao & Yong Sheng Zhao, 2019. "Full-color laser displays based on organic printed microlaser arrays," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. R. H. Friend & R. W. Gymer & A. B. Holmes & J. H. Burroughes & R. N. Marks & C. Taliani & D. D. C. Bradley & D. A. Dos Santos & J. L. Brédas & M. Lögdlund & W. R. Salaneck, 1999. "Electroluminescence in conjugated polymers," Nature, Nature, vol. 397(6715), pages 121-128, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Wei & Chunxiao Zhong & Yue Sun & Shuwei Ma & Mingjian Ni & Xiangping Wu & Yongxia Yan & Lei Yang & Ilya A. Khodov & Jiaoyang Ge & Yang Li & Dongqing Lin & Yongxia Wang & Qiujing Bao & He Zhang & , 2024. "C-H-activated Csp2-Csp3 diastereoselective gridization enables ultraviolet-emitting stereo-molecular nanohydrocarbons with mulitple H···H interactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Sha Bai & Lu-Wen Zhang & Zi-Hang Wei & Fang Wang & Qing-Wen Zhu & Ying-Feng Han, 2024. "Calix[2]azolium[2]benzimidazolone hosts for selective binding of neutral substrates in water," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying-Xin Ma & Xue-Dong Wang, 2024. "Directional self-assembly of organic vertically superposed nanowires," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Sayed Izaz Uddin & Muhammad Tahir & Fakhra Aziz & Mahidur R. Sarker & Fida Muhammad & Dil Nawaz Khan & Sawal Hamid Md Ali, 2020. "Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer," Energies, MDPI, vol. 13(22), pages 1-11, November.
    3. Zhe Lian & Jing He & Lin Liu & Yanqing Fan & Xuebo Chen & Hua Jiang, 2023. "[2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Kosuke Yasuji & Tomo Sakanoue & Fumihiro Yonekawa & Katsuichi Kanemoto, 2023. "Visualizing electroluminescence process in light-emitting electrochemical cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Alexander J. Gillett & Claire Tonnelé & Giacomo Londi & Gaetano Ricci & Manon Catherin & Darcy M. L. Unson & David Casanova & Frédéric Castet & Yoann Olivier & Weimin M. Chen & Elena Zaborova & Emrys , 2021. "Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Declan J. L. Golding & Nicholas Carter & David Robinson & Anthony J. Fitzpatrick, 2020. "Crystallisation-Induced Emission Enhancement in Zn(II) Schiff Base Complexes with a Tuneable Emission Colour," Sustainability, MDPI, vol. 12(22), pages 1-11, November.
    7. Jian Li & Cong Lin & Tianqiong Ma & Junliang Sun, 2022. "Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30121-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.