IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-07670-4.html
   My bibliography  Save this article

An AIEgen-based 3D covalent organic framework for white light-emitting diodes

Author

Listed:
  • Huimin Ding

    (Wuhan University)

  • Jian Li

    (Peking University
    Stockholm University)

  • Guohua Xie

    (Wuhan University)

  • Guiqing Lin

    (Wuhan University)

  • Rufan Chen

    (Wuhan University)

  • Zhengkang Peng

    (Wuhan University)

  • Chuluo Yang

    (Wuhan University)

  • Baoshan Wang

    (Wuhan University)

  • Junliang Sun

    (Peking University
    Stockholm University)

  • Cheng Wang

    (Wuhan University)

Abstract

The design and synthesis of three-dimensional covalent organic frameworks (3D COFs) have still been considered as a big challenge. Here we report the design and synthesis of an AIEgen-based 3D COF (3D-TPE-COF), with a high surface area (1084 m2 g−1). According to powder X-ray diffraction and continuous rotation electron diffraction analyses, 3D-TPE-COF is identified to adopt a seven-fold interpenetrated pts topology. Interestingly, 3D-TPE-COF emits yellow fluorescence upon excitation, with a photoluminescence quantum yield of 20%. Moreover, by simply coating 3D-TPE-COF onto a commercial blue light-emitting diode (LED), a prototype white LED (WLED) under continuously driving without degradation for 1200 h was demonstrated. The present work suggests the possibility of using COF materials for stable WLEDs, which will greatly inspire us to design and synthesize fluorescent 3D COFs and facilitate the development of COF-based WLEDs in future.

Suggested Citation

  • Huimin Ding & Jian Li & Guohua Xie & Guiqing Lin & Rufan Chen & Zhengkang Peng & Chuluo Yang & Baoshan Wang & Junliang Sun & Cheng Wang, 2018. "An AIEgen-based 3D covalent organic framework for white light-emitting diodes," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07670-4
    DOI: 10.1038/s41467-018-07670-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-07670-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-07670-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Lian & Jing He & Lin Liu & Yanqing Fan & Xuebo Chen & Hua Jiang, 2023. "[2,2] Paracyclophanes-based double helicates for constructing artificial light-harvesting systems and white LED device," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jian Li & Cong Lin & Tianqiong Ma & Junliang Sun, 2022. "Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Shuo Li & Kun Liu & Xue-Chen Feng & Zhao-Xian Li & Zhi-Yuan Zhang & Bin Wang & Minjie Li & Yue-Ling Bai & Lei Cui & Chunju Li, 2022. "Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-07670-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.