IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6715d10.1038_16393.html
   My bibliography  Save this article

Electroluminescence in conjugated polymers

Author

Listed:
  • R. H. Friend

    (Cavendish Laboratory, University of Cambridge
    Cambridge Display Technology)

  • R. W. Gymer

    (Cavendish Laboratory, University of Cambridge)

  • A. B. Holmes

    (Melville Laboratory for Polymer Synthesis, University of Cambridge)

  • J. H. Burroughes

    (Cambridge Display Technology)

  • R. N. Marks

    (Istituto di Spettroscopia Molecolare, CNR)

  • C. Taliani

    (Istituto di Spettroscopia Molecolare, CNR)

  • D. D. C. Bradley

    (University of Sheffield)

  • D. A. Dos Santos

    (Centre de Recherche en Electronique et Photonique Molculaires, Universit de Mons-Hainaut)

  • J. L. Brédas

    (Centre de Recherche en Electronique et Photonique Molculaires, Universit de Mons-Hainaut)

  • M. Lögdlund

    (Linkping University)

  • W. R. Salaneck

    (Linkping University)

Abstract

Research in the use of organic polymers as the active semiconductors in light-emitting diodes has advanced rapidly, and prototype devices now meet realistic specifications for applications. These achievements have provided insight into many aspects of the background science, from design and synthesis of materials, through materials fabrication issues, to the semiconductor physics of these polymers.

Suggested Citation

  • R. H. Friend & R. W. Gymer & A. B. Holmes & J. H. Burroughes & R. N. Marks & C. Taliani & D. D. C. Bradley & D. A. Dos Santos & J. L. Brédas & M. Lögdlund & W. R. Salaneck, 1999. "Electroluminescence in conjugated polymers," Nature, Nature, vol. 397(6715), pages 121-128, January.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6715:d:10.1038_16393
    DOI: 10.1038/16393
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/16393
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/16393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kosuke Yasuji & Tomo Sakanoue & Fumihiro Yonekawa & Katsuichi Kanemoto, 2023. "Visualizing electroluminescence process in light-emitting electrochemical cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Shuo Li & Kun Liu & Xue-Chen Feng & Zhao-Xian Li & Zhi-Yuan Zhang & Bin Wang & Minjie Li & Yue-Ling Bai & Lei Cui & Chunju Li, 2022. "Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Declan J. L. Golding & Nicholas Carter & David Robinson & Anthony J. Fitzpatrick, 2020. "Crystallisation-Induced Emission Enhancement in Zn(II) Schiff Base Complexes with a Tuneable Emission Colour," Sustainability, MDPI, vol. 12(22), pages 1-11, November.
    4. Sayed Izaz Uddin & Muhammad Tahir & Fakhra Aziz & Mahidur R. Sarker & Fida Muhammad & Dil Nawaz Khan & Sawal Hamid Md Ali, 2020. "Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer," Energies, MDPI, vol. 13(22), pages 1-11, November.
    5. Alexander J. Gillett & Claire Tonnelé & Giacomo Londi & Gaetano Ricci & Manon Catherin & Darcy M. L. Unson & David Casanova & Frédéric Castet & Yoann Olivier & Weimin M. Chen & Elena Zaborova & Emrys , 2021. "Spontaneous exciton dissociation enables spin state interconversion in delayed fluorescence organic semiconductors," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6715:d:10.1038_16393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.