IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50980-z.html
   My bibliography  Save this article

Calix[2]azolium[2]benzimidazolone hosts for selective binding of neutral substrates in water

Author

Listed:
  • Sha Bai

    (Northwest University)

  • Lu-Wen Zhang

    (Northwest University)

  • Zi-Hang Wei

    (Northwest University)

  • Fang Wang

    (Northwest University)

  • Qing-Wen Zhu

    (Northwest University)

  • Ying-Feng Han

    (Northwest University)

Abstract

The separation and purification of chemical raw materials, particularly neutral compounds with similar physical and chemical properties, represents an ongoing challenge. In this study, we introduce a class of water-soluble macrocycle compound, calix[2]azolium[2]benzimidazolone (H), comprising two azolium and two benzimidazolone subunits. The heterocycle subunits form a hydrophobic binding pocket that enables H1 to encapsulate a series of neutral guests in water with 1:1 or 2:1 stoichiometry, including aldehydes, ketones, and nitrile compounds. The host-guest complexation in the solid state was further confirmed through X-ray crystallography. Remarkably, H1 was shown to be a nonporous adaptive crystal material to separate valeraldehyde from the mixture of valeraldehyde/2-methylbutanal/pentanol with high selectivity and recyclability in the solid states. This work not only demonstrates that azolium-based macrocycles are promising candidates for the encapsulation of organic molecules but also shows the potential application in separation science.

Suggested Citation

  • Sha Bai & Lu-Wen Zhang & Zi-Hang Wei & Fang Wang & Qing-Wen Zhu & Ying-Feng Han, 2024. "Calix[2]azolium[2]benzimidazolone hosts for selective binding of neutral substrates in water," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50980-z
    DOI: 10.1038/s41467-024-50980-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50980-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50980-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuta Sawanaka & Masahiro Yamashina & Hiroyoshi Ohtsu & Shinji Toyota, 2022. "A self-complementary macrocycle by a dual interaction system," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Young Chun & N Jiten Singh & In-Chul Hwang & Jung Woo Lee & Seong Uk Yu & Kwang S Kim, 2013. "Calix[n]imidazolium as a new class of positively charged homo-calix compounds," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
    3. Bin Li & Lingling Liu & Yuan Wang & Kun Liu & Zhe Zheng & Shougang Sun & Yongxu Hu & Liqiang Li & Chunju Li, 2024. "Structurally diverse macrocycle co-crystals for solid-state luminescence modulation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Jingyu Chen & Wenjie Zhang & Wenzhi Yang & Fengcheng Xi & Hongyi He & Minghao Liang & Qian Dong & Jiawang Hou & Mengbin Wang & Guocan Yu & Jiong Zhou, 2024. "Separation of benzene and toluene associated with vapochromic behaviors by hybrid[4]arene-based co-crystals," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Shuo Li & Kun Liu & Xue-Chen Feng & Zhao-Xian Li & Zhi-Yuan Zhang & Bin Wang & Minjie Li & Yue-Ling Bai & Lei Cui & Chunju Li, 2022. "Synthesis and macrocyclization-induced emission enhancement of benzothiadiazole-based macrocycle," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Jian Yang & Shao-Jun Hu & Li-Xuan Cai & Li-Peng Zhou & Qing-Fu Sun, 2023. "Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Wei & Chunxiao Zhong & Yue Sun & Shuwei Ma & Mingjian Ni & Xiangping Wu & Yongxia Yan & Lei Yang & Ilya A. Khodov & Jiaoyang Ge & Yang Li & Dongqing Lin & Yongxia Wang & Qiujing Bao & He Zhang & , 2024. "C-H-activated Csp2-Csp3 diastereoselective gridization enables ultraviolet-emitting stereo-molecular nanohydrocarbons with mulitple H···H interactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50980-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.