IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50432-8.html
   My bibliography  Save this article

Strong high-energy exciton electroluminescence from the light holes of polytypic quantum dots

Author

Listed:
  • Xingzhi Wang

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Yan Gao

    (Henan University)

  • Xiaonan Liu

    (Beijing Institute of Technology)

  • Huaiyu Xu

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Ruixiang Liu

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Jiaojiao Song

    (Henan University)

  • Bo Li

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

  • Huaibin Shen

    (Henan University)

  • Fengjia Fan

    (University of Science and Technology of China
    University of Science and Technology of China
    University of Science and Technology of China)

Abstract

High-energy exciton emission could allow single-component multi-colour display or white light-emitting diodes. However, the thermal relaxation of high-energy excitons is much faster than the photon emission of them, making them non-emissive. Here, we report quantum dots with light hole-heavy hole splitting exhibiting strong high-energy exciton electroluminescence from high-lying light holes, opening a gate for high-performance multi-colour light sources. The high-energy electroluminescence can reach 44.5% of the band-edge heavy-hole exciton emission at an electron flux density Φe of 0.71 × 1019 s−1 cm−2 − 600 times lower than the photon flux density Φp (4.3 × 1021 s−1 cm−2) required for the similar ratio. Our simulation and experimental results suggest that the oscillator strength of heavy holes reduces more than that of light holes under electric fields. We attribute this as the main reason for strong light-hole electroluminescence. We observe this phenomenon in both CdxZn1-xSe-ZnS and CdSe-CdS core-shell quantum dots exhibiting large light hole-heavy hole splittings.

Suggested Citation

  • Xingzhi Wang & Yan Gao & Xiaonan Liu & Huaiyu Xu & Ruixiang Liu & Jiaojiao Song & Bo Li & Huaibin Shen & Fengjia Fan, 2024. "Strong high-energy exciton electroluminescence from the light holes of polytypic quantum dots," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50432-8
    DOI: 10.1038/s41467-024-50432-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50432-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50432-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Junhui Wang & Lifeng Wang & Shuwen Yu & Tao Ding & Dongmei Xiang & Kaifeng Wu, 2021. "Spin blockade and phonon bottleneck for hot electron relaxation observed in n-doped colloidal quantum dots," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Heeyoung Jung & Young-Shin Park & Namyoung Ahn & Jaehoon Lim & Igor Fedin & Clément Livache & Victor I. Klimov, 2022. "Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Fengjia Fan & Oleksandr Voznyy & Randy P. Sabatini & Kristopher T. Bicanic & Michael M. Adachi & James R. McBride & Kemar R. Reid & Young-Shin Park & Xiyan Li & Ankit Jain & Rafael Quintero-Bermudez &, 2017. "Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy," Nature, Nature, vol. 544(7648), pages 75-79, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Rainò & Nuri Yazdani & Simon C. Boehme & Manuel Kober-Czerny & Chenglian Zhu & Franziska Krieg & Marta D. Rossell & Rolf Erni & Vanessa Wood & Ivan Infante & Maksym V. Kovalenko, 2022. "Ultra-narrow room-temperature emission from single CsPbBr3 perovskite quantum dots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Dongju Jung & Jeong Woo Park & Sejong Min & Hak June Lee & Jin Su Park & Gui-Min Kim & Doyoon Shin & Seongbin Im & Jaemin Lim & Ka Hyung Kim & Jong Ah Chae & Doh C. Lee & Raphaël Pugin & Xavier Bullia, 2024. "Strain-graded quantum dots with spectrally pure, stable and polarized emission," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Junhui Wang & Tao Ding & Kaimin Gao & Lifeng Wang & Panwang Zhou & Kaifeng Wu, 2021. "Marcus inverted region of charge transfer from low-dimensional semiconductor materials," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Heeyoung Jung & Young-Shin Park & Namyoung Ahn & Jaehoon Lim & Igor Fedin & Clément Livache & Victor I. Klimov, 2022. "Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm−2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50432-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.