IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29798-0.html
   My bibliography  Save this article

Full-range birefringence control with piezoelectric MEMS-based metasurfaces

Author

Listed:
  • Chao Meng

    (University of Southern Denmark)

  • Paul C. V. Thrane

    (University of Southern Denmark
    SINTEF Microsystems and Nanotechnology)

  • Fei Ding

    (University of Southern Denmark)

  • Sergey I. Bozhevolnyi

    (University of Southern Denmark)

Abstract

Dynamic polarization control is crucial for emerging highly integrated photonic systems with diverse metasurfaces being explored for its realization, but efficient, fast, and broadband operation remains a cumbersome challenge. While efficient optical metasurfaces (OMSs) involving liquid crystals suffer from inherently slow responses, other OMS realizations are limited either in the operating wavelength range (due to resonances involved) or in the range of birefringence tuning. Capitalizing on our development of piezoelectric micro-electro-mechanical system (MEMS) based dynamic OMSs, we demonstrate reflective MEMS-OMS dynamic wave plates (DWPs) with high polarization conversion efficiencies (∼75%), broadband operation (∼100 nm near the operating wavelength of 800 nm), fast responses (

Suggested Citation

  • Chao Meng & Paul C. V. Thrane & Fei Ding & Sergey I. Bozhevolnyi, 2022. "Full-range birefringence control with piezoelectric MEMS-based metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29798-0
    DOI: 10.1038/s41467-022-29798-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29798-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29798-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pin Chieh Wu & Ragip A. Pala & Ghazaleh Kafaie Shirmanesh & Wen-Hui Cheng & Ruzan Sokhoyan & Meir Grajower & Muhammad Z. Alam & Duhyun Lee & Harry A. Atwater, 2019. "Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin Yao & Fangxing Lai & Yubin Fan & Yuhan Wang & Shih-Hsiu Huang & Borui Leng & Yao Liang & Rong Lin & Shufan Chen & Mu Ku Chen & Pin Chieh Wu & Shumin Xiao & Din Ping Tsai, 2024. "Nonlocal meta-lens with Huygens’ bound states in the continuum," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Ileana-Cristina Benea-Chelmus & Sydney Mason & Maryna L. Meretska & Delwin L. Elder & Dmitry Kazakov & Amirhassan Shams-Ansari & Larry R. Dalton & Federico Capasso, 2022. "Gigahertz free-space electro-optic modulators based on Mie resonances," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Julian Karst & Yohan Lee & Moritz Floess & Monika Ubl & Sabine Ludwigs & Mario Hentschel & Harald Giessen, 2022. "Electro-active metaobjective from metalenses-on-demand," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Hyounghan Kwon & Tianzhe Zheng & Andrei Faraon, 2022. "Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Claudio U. Hail & Morgan Foley & Ruzan Sokhoyan & Lior Michaeli & Harry A. Atwater, 2023. "High quality factor metasurfaces for two-dimensional wavefront manipulation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Ileana-Cristina Benea-Chelmus & Maryna L. Meretska & Delwin L. Elder & Michele Tamagnone & Larry R. Dalton & Federico Capasso, 2021. "Electro-optic spatial light modulator from an engineered organic layer," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    7. Renato Juliano Martins & Emil Marinov & M. Aziz Ben Youssef & Christina Kyrou & Mathilde Joubert & Constance Colmagro & Valentin Gâté & Colette Turbil & Pierre-Marie Coulon & Daniel Turover & Samira K, 2022. "Metasurface-enhanced light detection and ranging technology," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29798-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.