IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29688-5.html
   My bibliography  Save this article

Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183

Author

Listed:
  • Laura E. Vries

    (Radboud Institute for Molecular Life Sciences, Radboud University Medical Center
    Harvard T.H. Chan School of Public Health)

  • Patrick A. M. Jansen

    (Radboud Institute for Molecular Life Sciences, Radboud University Medical Center)

  • Catalina Barcelo

    (Medicines for Malaria Venture)

  • Justin Munro

    (The Pennsylvania State University)

  • Julie M. J. Verhoef

    (Radboud Institute for Molecular Life Sciences, Radboud University Medical Center)

  • Charisse Flerida A. Pasaje

    (Massachusetts Institute of Technology)

  • Kelly Rubiano

    (Columbia University Irving Medical Center)

  • Josefine Striepen

    (Columbia University Irving Medical Center)

  • Nada Abla

    (Medicines for Malaria Venture)

  • Luuk Berning

    (TropIQ Health Sciences)

  • Judith M. Bolscher

    (TropIQ Health Sciences)

  • Claudia Demarta-Gatsi

    (Medicines for Malaria Venture)

  • Rob W. M. Henderson

    (TropIQ Health Sciences)

  • Tonnie Huijs

    (TropIQ Health Sciences)

  • Karin M. J. Koolen

    (TropIQ Health Sciences)

  • Patrick K. Tumwebaze

    (Infectious Diseases Research Collaboration)

  • Tomas Yeo

    (Columbia University Irving Medical Center)

  • Anna C. C. Aguiar

    (Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil)

  • Iñigo Angulo-Barturen

    (The Art of Discovery)

  • Alisje Churchyard

    (Imperial College London)

  • Jake Baum

    (Imperial College London)

  • Benigno Crespo Fernández

    (Global Health, GlaxoSmithKline)

  • Aline Fuchs

    (Medicines for Malaria Venture)

  • Francisco-Javier Gamo

    (Global Health, GlaxoSmithKline)

  • Rafael V. C. Guido

    (Sao Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil)

  • María Belén Jiménez-Diaz

    (The Art of Discovery)

  • Dhelio B. Pereira

    (Research Center for Tropical Medicine of Rondonia)

  • Rosemary Rochford

    (University of Colorado Anschutz School of Medicine)

  • Camille Roesch

    (Institut Pasteur du Cambodge
    Institut Pasteur, Paris & Institut Pasteur du Cambodge)

  • Laura M. Sanz

    (Global Health, GlaxoSmithKline)

  • Graham Trevitt

    (Sygnature Discovery)

  • Benoit Witkowski

    (Institut Pasteur du Cambodge
    Institut Pasteur, Paris & Institut Pasteur du Cambodge)

  • Sergio Wittlin

    (Swiss Tropical and Public Health Institute
    University of Basel)

  • Roland A. Cooper

    (Dominican University of California)

  • Philip J. Rosenthal

    (University of California)

  • Robert W. Sauerwein

    (Radboud Institute for Molecular Life Sciences, Radboud University Medical Center
    TropIQ Health Sciences)

  • Joost Schalkwijk

    (Radboud Institute for Molecular Life Sciences, Radboud University Medical Center)

  • Pedro H. H. Hermkens

    (Hermkens Pharma Consultancy)

  • Roger V. Bonnert

    (Medicines for Malaria Venture)

  • Brice Campo

    (Medicines for Malaria Venture)

  • David A. Fidock

    (Columbia University Irving Medical Center
    Columbia University Irving Medical Center)

  • Manuel Llinás

    (The Pennsylvania State University
    The Pennsylvania State University)

  • Jacquin C. Niles

    (Massachusetts Institute of Technology)

  • Taco W. A. Kooij

    (Radboud Institute for Molecular Life Sciences, Radboud University Medical Center)

  • Koen J. Dechering

    (TropIQ Health Sciences)

Abstract

Drug resistance and a dire lack of transmission-blocking antimalarials hamper malaria elimination. Here, we present the pantothenamide MMV693183 as a first-in-class acetyl-CoA synthetase (AcAS) inhibitor to enter preclinical development. Our studies demonstrate attractive drug-like properties and in vivo efficacy in a humanized mouse model of Plasmodium falciparum infection. The compound shows single digit nanomolar in vitro activity against P. falciparum and P. vivax clinical isolates, and potently blocks P. falciparum transmission to Anopheles mosquitoes. Genetic and biochemical studies identify AcAS as the target of the MMV693183-derived antimetabolite, CoA-MMV693183. Pharmacokinetic-pharmacodynamic modelling predict that a single 30 mg oral dose is sufficient to cure a malaria infection in humans. Toxicology studies in rats indicate a > 30-fold safety margin in relation to the predicted human efficacious exposure. In conclusion, MMV693183 represents a promising candidate for further (pre)clinical development with a novel mode of action for treatment of malaria and blocking transmission.

Suggested Citation

  • Laura E. Vries & Patrick A. M. Jansen & Catalina Barcelo & Justin Munro & Julie M. J. Verhoef & Charisse Flerida A. Pasaje & Kelly Rubiano & Josefine Striepen & Nada Abla & Luuk Berning & Judith M. Bo, 2022. "Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29688-5
    DOI: 10.1038/s41467-022-29688-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29688-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29688-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Suresh M. Ganesan & Alejandra Falla & Stephen J. Goldfless & Armiyaw S. Nasamu & Jacquin C. Niles, 2016. "Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites," Nature Communications, Nature, vol. 7(1), pages 1-10, April.
    2. Michael J. Delves & Celia Miguel-Blanco & Holly Matthews & Irene Molina & Andrea Ruecker & Sabrina Yahiya & Ursula Straschil & Matthew Abraham & María Luisa León & Oliver J. Fischer & Ainoa Rueda-Zubi, 2018. "A high throughput screen for next-generation leads targeting malaria parasite transmission," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Selina Bopp & Charisse Flerida A. Pasaje & Robert L. Summers & Pamela Magistrado-Coxen & Kyra A. Schindler & Victoriano Corpas-Lopez & Tomas Yeo & Sachel Mok & Sumanta Dey & Sebastian Smick & Armiyaw , 2023. "Potent acyl-CoA synthetase 10 inhibitors kill Plasmodium falciparum by disrupting triglyceride formation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Mariska Naude & Ashleigh van Heerden & Janette Reader & Mariëtte van der Watt & Jandeli Niemand & Dorè Joubert & Giulia Siciliano & Pietro Alano & Mathew Njoroge & Kelly Chibale & Esperanza Herreros &, 2024. "Eliminating malaria transmission requires targeting immature and mature gametocytes through lipoidal uptake of antimalarials," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deyun Qiu & Jinxin V. Pei & James E. O. Rosling & Vandana Thathy & Dongdi Li & Yi Xue & John D. Tanner & Jocelyn Sietsma Penington & Yi Tong Vincent Aw & Jessica Yi Han Aw & Guoyue Xu & Abhai K. Tripa, 2022. "A G358S mutation in the Plasmodium falciparum Na+ pump PfATP4 confers clinically-relevant resistance to cipargamin," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Mario Carucci & Julien Duez & Joel Tarning & Irene García-Barbazán & Aurélie Fricot-Monsinjon & Abdoulaye Sissoko & Lucie Dumas & Pablo Gamallo & Babette Beher & Pascal Amireault & Michael Dussiot & M, 2023. "Safe drugs with high potential to block malaria transmission revealed by a spleen-mimetic screening," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Marvin Chew & Weijian Ye & Radoslaw Igor Omelianczyk & Charisse Flerida Pasaje & Regina Hoo & Qingfeng Chen & Jacquin C. Niles & Jianzhu Chen & Peter Preiser, 2022. "Selective expression of variant surface antigens enables Plasmodium falciparum to evade immune clearance in vivo," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Thomas Hollin & Steven Abel & Alejandra Falla & Charisse Flerida A. Pasaje & Anil Bhatia & Manhoi Hur & Jay S. Kirkwood & Anita Saraf & Jacques Prudhomme & Amancio De Souza & Laurence Florens & Jacqui, 2022. "Functional genomics of RAP proteins and their role in mitoribosome regulation in Plasmodium falciparum," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Hui Min & Xiaoying Liang & Chengqi Wang & Junling Qin & Rachasak Boonhok & Azhar Muneer & Awtum M. Brashear & Xiaolian Li & Allen M. Minns & Swamy Rakesh Adapa & Rays H. Y. Jiang & Gang Ning & Yaming , 2024. "The DEAD-box RNA helicase PfDOZI imposes opposing actions on RNA metabolism in Plasmodium falciparum," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Alexander A. Morano & Rachel M. Rudlaff & Jeffrey D. Dvorin, 2023. "A PPP-type pseudophosphatase is required for the maintenance of basal complex integrity in Plasmodium falciparum," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Madeline G. Dans & Coralie Boulet & Gabrielle M. Watson & William Nguyen & Jerzy M. Dziekan & Cindy Evelyn & Kitsanapong Reaksudsan & Somya Mehra & Zahra Razook & Niall D. Geoghegan & Michael J. Mlodz, 2024. "Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    8. Jiahong Li & Gerald J. Shami & Ellie Cho & Boyin Liu & Eric Hanssen & Matthew W. A. Dixon & Leann Tilley, 2022. "Repurposing the mitotic machinery to drive cellular elongation and chromatin reorganisation in Plasmodium falciparum gametocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Stanley C. Xie & Yinuo Wang & Craig J. Morton & Riley D. Metcalfe & Con Dogovski & Charisse Flerida A. Pasaje & Elyse Dunn & Madeline R. Luth & Krittikorn Kumpornsin & Eva S. Istvan & Joon Sung Park &, 2024. "Reaction hijacking inhibition of Plasmodium falciparum asparagine tRNA synthetase," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29688-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.