IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-32579-4.html
   My bibliography  Save this article

Repurposing the mitotic machinery to drive cellular elongation and chromatin reorganisation in Plasmodium falciparum gametocytes

Author

Listed:
  • Jiahong Li

    (The University of Melbourne)

  • Gerald J. Shami

    (The University of Melbourne)

  • Ellie Cho

    (The University of Melbourne
    The University of Melbourne)

  • Boyin Liu

    (The University of Melbourne)

  • Eric Hanssen

    (The University of Melbourne
    The University of Melbourne)

  • Matthew W. A. Dixon

    (The University of Melbourne
    Walter and Eliza Hall Institute)

  • Leann Tilley

    (The University of Melbourne)

Abstract

The sexual stage gametocytes of the malaria parasite, Plasmodium falciparum, adopt a falciform (crescent) shape driven by the assembly of a network of microtubules anchored to a cisternal inner membrane complex (IMC). Using 3D electron microscopy, we show that a non-mitotic microtubule organizing center (MTOC), embedded in the parasite’s nuclear membrane, orients the endoplasmic reticulum and the nascent IMC and seeds cytoplasmic microtubules. A bundle of microtubules extends into the nuclear lumen, elongating the nuclear envelope and capturing the chromatin. Classical mitotic machinery components, including centriolar plaque proteins, Pfcentrin-1 and −4, microtubule-associated protein, End-binding protein-1, kinetochore protein, PfNDC80 and centromere-associated protein, PfCENH3, are involved in the nuclear microtubule assembly/disassembly process. Depolymerisation of the microtubules using trifluralin prevents elongation and disrupts the chromatin, centromere and kinetochore organisation. We show that the unusual non-mitotic hemispindle plays a central role in chromatin organisation, IMC positioning and subpellicular microtubule formation in gametocytes.

Suggested Citation

  • Jiahong Li & Gerald J. Shami & Ellie Cho & Boyin Liu & Eric Hanssen & Matthew W. A. Dixon & Leann Tilley, 2022. "Repurposing the mitotic machinery to drive cellular elongation and chromatin reorganisation in Plasmodium falciparum gametocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32579-4
    DOI: 10.1038/s41467-022-32579-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-32579-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-32579-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tom Misteli & Akash Gunjan & Robert Hock & Michael Bustin & David T. Brown, 2000. "Dynamic binding of histone H1 to chromatin in living cells," Nature, Nature, vol. 408(6814), pages 877-881, December.
    2. Michael J. Delves & Celia Miguel-Blanco & Holly Matthews & Irene Molina & Andrea Ruecker & Sabrina Yahiya & Ursula Straschil & Matthew Abraham & María Luisa León & Oliver J. Fischer & Ainoa Rueda-Zubi, 2018. "A high throughput screen for next-generation leads targeting malaria parasite transmission," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Sylwia D. Boltryk & Armin Passecker & Arne Alder & Eilidh Carrington & Marga Vegte-Bolmer & Geert-Jan Gemert & Alex Starre & Hans-Peter Beck & Robert W. Sauerwein & Taco W. A. Kooij & Nicolas M. B. Br, 2021. "CRISPR/Cas9-engineered inducible gametocyte producer lines as a valuable tool for Plasmodium falciparum malaria transmission research," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josie L. Ferreira & Vojtěch Pražák & Daven Vasishtan & Marc Siggel & Franziska Hentzschel & Annika M. Binder & Emma Pietsch & Jan Kosinski & Friedrich Frischknecht & Tim W. Gilberger & Kay Grünewald, 2023. "Variable microtubule architecture in the malaria parasite," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Mohammad Zeeshan & Edward Rea & Steven Abel & Kruno Vukušić & Robert Markus & Declan Brady & Antonius Eze & Ravish Rashpa & Aurelia C. Balestra & Andrew R. Bottrill & Mathieu Brochet & David S. Gutter, 2023. "Plasmodium ARK2 and EB1 drive unconventional spindle dynamics, during chromosome segregation in sexual transmission stages," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Shuzhen Yang & Mengya Cai & Junjie Huang & Shengnan Zhang & Xiaoli Mo & Kai Jiang & Huiting Cui & Jing Yuan, 2023. "EB1 decoration of microtubule lattice facilitates spindle-kinetochore lateral attachment in Plasmodium male gametogenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Carucci & Julien Duez & Joel Tarning & Irene García-Barbazán & Aurélie Fricot-Monsinjon & Abdoulaye Sissoko & Lucie Dumas & Pablo Gamallo & Babette Beher & Pascal Amireault & Michael Dussiot & M, 2023. "Safe drugs with high potential to block malaria transmission revealed by a spleen-mimetic screening," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Madeline G. Dans & Coralie Boulet & Gabrielle M. Watson & William Nguyen & Jerzy M. Dziekan & Cindy Evelyn & Kitsanapong Reaksudsan & Somya Mehra & Zahra Razook & Niall D. Geoghegan & Michael J. Mlodz, 2024. "Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    3. Laura A. Murray-Nerger & Clarisel Lozano & Eric M. Burton & Yifei Liao & Nathan A. Ungerleider & Rui Guo & Benjamin E. Gewurz, 2024. "The nucleic acid binding protein SFPQ represses EBV lytic reactivation by promoting histone H1 expression," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Josie L. Ferreira & Vojtěch Pražák & Daven Vasishtan & Marc Siggel & Franziska Hentzschel & Annika M. Binder & Emma Pietsch & Jan Kosinski & Friedrich Frischknecht & Tim W. Gilberger & Kay Grünewald, 2023. "Variable microtubule architecture in the malaria parasite," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Carlos Contreras & Minaya Villasana & Michael J Hendzel & Gustavo Carrero, 2018. "Using a model comparison approach to describe the assembly pathway for histone H1," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-21, January.
    6. Laura E. Vries & Patrick A. M. Jansen & Catalina Barcelo & Justin Munro & Julie M. J. Verhoef & Charisse Flerida A. Pasaje & Kelly Rubiano & Josefine Striepen & Nada Abla & Luuk Berning & Judith M. Bo, 2022. "Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-32579-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.