IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v535y2016i7613d10.1038_nature18942.html
   My bibliography  Save this article

Rapid signalling in distinct dopaminergic axons during locomotion and reward

Author

Listed:
  • M. W. Howe

    (Northwestern University)

  • D. A. Dombeck

    (Northwestern University)

Abstract

Fast phasic signals in dopaminergic axons in the dorsal striatum occur during, and can induce, motor accelerations in mice, and these signals are transmitted by a largely distinct population of dopaminergic axons from those that signal reward.

Suggested Citation

  • M. W. Howe & D. A. Dombeck, 2016. "Rapid signalling in distinct dopaminergic axons during locomotion and reward," Nature, Nature, vol. 535(7613), pages 505-510, July.
  • Handle: RePEc:nat:nature:v:535:y:2016:i:7613:d:10.1038_nature18942
    DOI: 10.1038/nature18942
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature18942
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature18942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincent Paget-Blanc & Marlene E. Pfeffer & Marie Pronot & Paul Lapios & Maria-Florencia Angelo & Roman Walle & Fabrice P. Cordelières & Florian Levet & Stéphane Claverol & Sabrina Lacomme & Mélina Pet, 2022. "A synaptomic analysis reveals dopamine hub synapses in the mouse striatum," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    2. Min Jung Kim & Daniel J. Gibson & Dan Hu & Tomoko Yoshida & Emily Hueske & Ayano Matsushima & Ara Mahar & Cynthia J. Schofield & Patlapa Sompolpong & Kathy T. Tran & Lin Tian & Ann M. Graybiel, 2024. "Dopamine release plateau and outcome signals in dorsal striatum contrast with classic reinforcement learning formulations," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    3. Bernard Bloem & Rafiq Huda & Ken-ichi Amemori & Alex S. Abate & Gayathri Krishna & Anna L. Wilson & Cody W. Carter & Mriganka Sur & Ann M. Graybiel, 2022. "Multiplexed action-outcome representation by striatal striosome-matrix compartments detected with a mouse cost-benefit foraging task," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Daniel Serra, 2021. "Decision-making: from neuroscience to neuroeconomics—an overview," Theory and Decision, Springer, vol. 91(1), pages 1-80, July.
    6. Ayaka Kato & Kenji Morita, 2016. "Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-41, October.
    7. John N. J. Reynolds & Riccardo Avvisati & Paul D. Dodson & Simon D. Fisher & Manfred J. Oswald & Jeffery R. Wickens & Yan-Feng Zhang, 2022. "Coincidence of cholinergic pauses, dopaminergic activation and depolarisation of spiny projection neurons drives synaptic plasticity in the striatum," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yosuke Yawata & Yu Shikano & Jun Ogasawara & Kenichi Makino & Tetsuhiko Kashima & Keiko Ihara & Airi Yoshimoto & Shota Morikawa & Sho Yagishita & Kenji F. Tanaka & Yuji Ikegaya, 2023. "Mesolimbic dopamine release precedes actively sought aversive stimuli in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Jérémie Naudé & Matthieu X. B. Sarazin & Sarah Mondoloni & Bernadette Hannesse & Eléonore Vicq & Fabrice Amegandjin & Alexandre Mourot & Philippe Faure & Bruno Delord, 2024. "Dopamine builds and reveals reward-associated latent behavioral attractors," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Allen P. F. Chen & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Shaoyu Ge & Qiaojie Xiong, 2023. "Nigrostriatal dopamine modulates the striatal-amygdala pathway in auditory fear conditioning," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Lior Matityahu & Naomi Gilin & Gideon A. Sarpong & Yara Atamna & Lior Tiroshi & Nicolas X. Tritsch & Jeffery R. Wickens & Joshua A. Goldberg, 2023. "Acetylcholine waves and dopamine release in the striatum," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:535:y:2016:i:7613:d:10.1038_nature18942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.