IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28905-5.html
   My bibliography  Save this article

Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity

Author

Listed:
  • Otavio Cabral-Marques

    (University of São Paulo
    University of São Paulo
    Universal Scientific Education and Research Network (USERN))

  • Gilad Halpert

    (Sheba Medical Center
    Saint Petersburg State University)

  • Lena F. Schimke

    (University of São Paulo)

  • Yuri Ostrinski

    (Sheba Medical Center
    Saint Petersburg State University
    Ariel University)

  • Aristo Vojdani

    (Immunosciences Laboratory, Inc.
    Cyrex Laboratories)

  • Gabriela Crispim Baiocchi

    (University of São Paulo)

  • Paula Paccielli Freire

    (University of São Paulo)

  • Igor Salerno Filgueiras

    (University of São Paulo)

  • Israel Zyskind

    (NYU Langone Medical Center
    Maimonides Medical Center)

  • Miriam T. Lattin

    (Yeshiva University)

  • Florian Tran

    (University Medical Center Schleswig-Holstein Campus Kiel)

  • Stefan Schreiber

    (University Medical Center Schleswig-Holstein Campus Kiel)

  • Alexandre H. C. Marques

    (University of São Paulo)

  • Desirée Rodrigues Plaça

    (University of São Paulo)

  • Dennyson Leandro M. Fonseca

    (University of São Paulo)

  • Jens Y. Humrich

    (University Medical Center Schleswig-Holstein Campus Lübeck)

  • Antje Müller

    (University Medical Center Schleswig-Holstein Campus Lübeck)

  • Lasse M. Giil

    (Haraldsplass Deaconess Hospital)

  • Hanna Graßhoff

    (University Medical Center Schleswig-Holstein Campus Lübeck)

  • Anja Schumann

    (University Medical Center Schleswig-Holstein Campus Lübeck)

  • Alexander Hackel

    (University Medical Center Schleswig-Holstein Campus Lübeck)

  • Juliane Junker

    (CellTrend Gesellschaft mit beschränkter Haftung (GmbH))

  • Carlotta Meyer

    (CellTrend Gesellschaft mit beschränkter Haftung (GmbH))

  • Hans D. Ochs

    (University of Washington School of Medicine, and Seattle Children’s Research Institute)

  • Yael Bublil Lavi

    (Tel-Aviv University)

  • Carmen Scheibenbogen

    (Humboldt-Universität zu Berlin, and Berlin Institute of Health)

  • Ralf Dechend

    (Department of Cardiology and Nephrology)

  • Igor Jurisica

    (University of Toronto
    Slovak Academy of Sciences)

  • Kai Schulze-Forster

    (CellTrend Gesellschaft mit beschränkter Haftung (GmbH))

  • Jonathan I. Silverberg

    (George Washington University)

  • Howard Amital

    (Sheba Medical Center
    Tel-Aviv University
    Sheba Medical Center)

  • Jason Zimmerman

    (Maimonides Medical Center)

  • Harry Heidecke

    (CellTrend Gesellschaft mit beschränkter Haftung (GmbH))

  • Avi Z. Rosenberg

    (Johns Hopkins University)

  • Gabriela Riemekasten

    (University Medical Center Schleswig-Holstein Campus Lübeck)

  • Yehuda Shoenfeld

    (Sheba Medical Center
    Saint Petersburg State University
    Ariel University)

Abstract

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.

Suggested Citation

  • Otavio Cabral-Marques & Gilad Halpert & Lena F. Schimke & Yuri Ostrinski & Aristo Vojdani & Gabriela Crispim Baiocchi & Paula Paccielli Freire & Igor Salerno Filgueiras & Israel Zyskind & Miriam T. La, 2022. "Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28905-5
    DOI: 10.1038/s41467-022-28905-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28905-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28905-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sanne P. Smeekens & Aylwin Ng & Vinod Kumar & Melissa D. Johnson & Theo S. Plantinga & Cleo van Diemen & Peer Arts & Eugène T. P. Verwiel & Mark S. Gresnigt & Karin Fransen & Suzanne van Sommeren & Ma, 2013. "Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
    2. Eric Y. Wang & Tianyang Mao & Jon Klein & Yile Dai & John D. Huck & Jillian R. Jaycox & Feimei Liu & Ting Zhou & Benjamin Israelow & Patrick Wong & Andreas Coppi & Carolina Lucas & Julio Silva & Ji Eu, 2021. "Diverse functional autoantibodies in patients with COVID-19," Nature, Nature, vol. 595(7866), pages 283-288, July.
    3. Nathan Robertson & Mathieu Rappas & Andrew S. Doré & Jason Brown & Giovanni Bottegoni & Markus Koglin & Julie Cansfield & Ali Jazayeri & Robert M. Cooke & Fiona H. Marshall, 2018. "Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727," Nature, Nature, vol. 553(7686), pages 111-114, January.
    4. Roxanne Khamsi, 2021. "Rogue antibodies could be driving severe COVID-19," Nature, Nature, vol. 590(7844), pages 29-31, February.
    5. Sarah Esther Chang & Allan Feng & Wenzhao Meng & Sokratis A. Apostolidis & Elisabeth Mack & Maja Artandi & Linda Barman & Kate Bennett & Saborni Chakraborty & Iris Chang & Peggie Cheung & Sharon Chint, 2021. "New-onset IgG autoantibodies in hospitalized patients with COVID-19," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakob Ankerhold & Sebastian Giese & Philipp Kolb & Andrea Maul-Pavicic & Reinhard E. Voll & Nathalie Göppert & Kevin Ciminski & Clemens Kreutz & Achim Lother & Ulrich Salzer & Wolfgang Bildl & Tim Wel, 2022. "Circulating multimeric immune complexes contribute to immunopathology in COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Jillian R. Jaycox & Carolina Lucas & Inci Yildirim & Yile Dai & Eric Y. Wang & Valter Monteiro & Sandra Lord & Jeffrey Carlin & Mariko Kita & Jane H. Buckner & Shuangge Ma & Melissa Campbell & Albert , 2023. "SARS-CoV-2 mRNA vaccines decouple anti-viral immunity from humoral autoimmunity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Hideki Ogura & Jin Gohda & Xiuyuan Lu & Mizuki Yamamoto & Yoshio Takesue & Aoi Son & Sadayuki Doi & Kazuyuki Matsushita & Fumitaka Isobe & Yoshihiro Fukuda & Tai-Ping Huang & Takamasa Ueno & Naomi Mam, 2022. "Dysfunctional Sars-CoV-2-M protein-specific cytotoxic T lymphocytes in patients recovering from severe COVID-19," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Brent Appelman & Braeden T. Charlton & Richie P. Goulding & Tom J. Kerkhoff & Ellen A. Breedveld & Wendy Noort & Carla Offringa & Frank W. Bloemers & Michel Weeghel & Bauke V. Schomakers & Pedro Coelh, 2024. "Muscle abnormalities worsen after post-exertional malaise in long COVID," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Cecilia Fahlquist-Hagert & Thomas R. Wittenborn & Ewa Terczyńska-Dyla & Kristian Savstrup Kastberg & Emily Yang & Alysa Nicole Rallistan & Quinton Raymond Markett & Gudrun Winther & Sofie Fonager & La, 2023. "Antigen presentation by B cells enables epitope spreading across an MHC barrier," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    6. Manina M. Etter & Tomás A. Martins & Laila Kulsvehagen & Elisabeth Pössnecker & Wandrille Duchemin & Sabrina Hogan & Gretel Sanabria-Diaz & Jannis Müller & Alessio Chiappini & Jonathan Rychen & Noëmi , 2022. "Severe Neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    7. Cristina Molina-López & Laura Hurtado-Navarro & Carlos J. García & Diego Angosto-Bazarra & Fernando Vallejo & Ana Tapia-Abellán & Joana R. Marques-Soares & Carmen Vargas & Segundo Bujan-Rivas & Franci, 2024. "Pathogenic NLRP3 mutants form constitutively active inflammasomes resulting in immune-metabolic limitation of IL-1β production," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    8. Roy Oelen & Dylan H. Vries & Harm Brugge & M. Grace Gordon & Martijn Vochteloo & Chun J. Ye & Harm-Jan Westra & Lude Franke & Monique G. P. Wijst, 2022. "Single-cell RNA-sequencing of peripheral blood mononuclear cells reveals widespread, context-specific gene expression regulation upon pathogenic exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. André Santa Cruz & Ana Mendes-Frias & Marne Azarias-da-Silva & Sónia André & Ana Isabel Oliveira & Olga Pires & Marta Mendes & Bárbara Oliveira & Marta Braga & Joana Rita Lopes & Rui Domingues & Ricar, 2023. "Post-acute sequelae of COVID-19 is characterized by diminished peripheral CD8+β7 integrin+ T cells and anti-SARS-CoV-2 IgA response," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Al Ozonoff & Naresh Doni Jayavelu & Shanshan Liu & Esther Melamed & Carly E. Milliren & Jingjing Qi & Linda N. Geng & Grace A. McComsey & Charles B. Cairns & Lindsey R. Baden & Joanna Schaenman & Albe, 2024. "Features of acute COVID-19 associated with post-acute sequelae of SARS-CoV-2 phenotypes: results from the IMPACC study," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    11. Rúbens Prince dos Santos Alves & Julia Timis & Robyn Miller & Kristen Valentine & Paolla Beatriz Almeida Pinto & Andrew Gonzalez & Jose Angel Regla-Nava & Erin Maule & Michael N. Nguyen & Norazizah Sh, 2024. "Human coronavirus OC43-elicited CD4+ T cells protect against SARS-CoV-2 in HLA transgenic mice," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Juliana Lapa & Davi Rosa & João Pedro Lima Mendes & Rodolfo Deusdará & Gustavo Adolfo Sierra Romero, 2023. "Prevalence and Associated Factors of Post-COVID-19 Syndrome in a Brazilian Cohort after 3 and 6 Months of Hospital Discharge," IJERPH, MDPI, vol. 20(1), pages 1-12, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28905-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.