IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28777-9.html
   My bibliography  Save this article

Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice

Author

Listed:
  • Ting Wan

    (Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University)

  • Wusheng Zhu

    (Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University)

  • Ying Zhao

    (Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University)

  • Xiaohao Zhang

    (Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University)

  • Ruidong Ye

    (Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University)

  • Meng Zuo

    (Department of Neurology, Southwest Hospital and the First Affiliated Hospital, Army Medical University)

  • Pengfei Xu

    (Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China)

  • Zhenqian Huang

    (Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University)

  • Chunni Zhang

    (Department of Clinical Laboratory, Affiliated Jinling Hospital, Medical School of Nanjing University)

  • Yi Xie

    (Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University)

  • Xinfeng Liu

    (Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University
    Stroke Center & Department of Neurology, The Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China)

Abstract

Ischemic stroke can cause secondary myelin damage in the white matter distal to the primary injury site. The contribution of astrocytes during secondary demyelination and the underlying mechanisms are unclear. Here, using a mouse of distal middle cerebral artery occlusion, we show that lipocalin-2 (LCN2), enriched in reactive astrocytes, expression increases in nonischemic areas of the corpus callosum upon injury. LCN2-expressing astrocytes acquire a phagocytic phenotype and are able to uptake myelin. Myelin removal is impaired in Lcn2−/− astrocytes. Inducing re-expression of truncated LCN2(Δ2–20) in astrocytes restores phagocytosis and leads to progressive demyelination in Lcn2−/− mice. Co-immunoprecipitation experiments show that LCN2 binds to low-density lipoprotein receptor-related protein 1 (LRP1) in astrocytes. Knockdown of Lrp1 reduces LCN2-induced myelin engulfment by astrocytes and reduces demyelination. Altogether, our findings suggest that LCN2/LRP1 regulates astrocyte-mediated myelin phagocytosis in a mouse model of ischemic stroke.

Suggested Citation

  • Ting Wan & Wusheng Zhu & Ying Zhao & Xiaohao Zhang & Ruidong Ye & Meng Zuo & Pengfei Xu & Zhenqian Huang & Chunni Zhang & Yi Xie & Xinfeng Liu, 2022. "Astrocytic phagocytosis contributes to demyelination after focal cortical ischemia in mice," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28777-9
    DOI: 10.1038/s41467-022-28777-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28777-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28777-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Won-Suk Chung & Laura E. Clarke & Gordon X. Wang & Benjamin K. Stafford & Alexander Sher & Chandrani Chakraborty & Julia Joung & Lynette C. Foo & Andrew Thompson & Chinfei Chen & Stephen J. Smith & Be, 2013. "Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways," Nature, Nature, vol. 504(7480), pages 394-400, December.
    2. Yosuke M. Morizawa & Yuri Hirayama & Nobuhiko Ohno & Shinsuke Shibata & Eiji Shigetomi & Yang Sui & Junichi Nabekura & Koichi Sato & Fumikazu Okajima & Hirohide Takebayashi & Hideyuki Okano & Schuichi, 2017. "Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
    3. Yosuke M. Morizawa & Yuri Hirayama & Nobuhiko Ohno & Shinsuke Shibata & Eiji Shigetomi & Yang Sui & Junichi Nabekura & Koichi Sato & Fumikazu Okajima & Hirohide Takebayashi & Hideyuki Okano & Schuichi, 2017. "Author Correction: Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Chen & Yaqing Shu & Chengkai Yan & Huilu Li & Zhenchao Huang & ShiShi Shen & Chunxin Liu & Yanjun Jiang & Shixiong Huang & Zhanhang Wang & Feng Mei & Feng Qin & Xiaodong Liu & Wei Qiu, 2024. "Astrocyte-derived clusterin disrupts glial physiology to obstruct remyelination in mouse models of demyelinating diseases," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojing Shi & Longlong Luo & Jixian Wang & Hui Shen & Yongfang Li & Muyassar Mamtilahun & Chang Liu & Rubing Shi & Joon-Hyuk Lee & Hengli Tian & Zhijun Zhang & Yongting Wang & Won-Suk Chung & Yaohui , 2021. "Stroke subtype-dependent synapse elimination by reactive gliosis in mice," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    2. Tian Zhou & Yuxin Li & Xiaoyu Li & Fanzhuo Zeng & Yanxia Rao & Yang He & Yafei Wang & Meizhen Liu & Dali Li & Zhen Xu & Xin Zhou & Siling Du & Fugui Niu & Jiyun Peng & Xifan Mei & Sheng-Jian Ji & Yous, 2022. "Microglial debris is cleared by astrocytes via C4b-facilitated phagocytosis and degraded via RUBICON-dependent noncanonical autophagy in mice," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    3. Samuel S. Kim & Buu Truong & Karthik Jagadeesh & Kushal K. Dey & Amber Z. Shen & Soumya Raychaudhuri & Manolis Kellis & Alkes L. Price, 2024. "Leveraging single-cell ATAC-seq and RNA-seq to identify disease-critical fetal and adult brain cell types," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Danyang Chen & Qianqian Lou & Xiang-Jie Song & Fang Kang & An Liu & Changjian Zheng & Yanhua Li & Di Wang & Sen Qun & Zhi Zhang & Peng Cao & Yan Jin, 2024. "Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Hidenori Tabata & Megumi Sasaki & Masakazu Agetsuma & Hitomi Sano & Yuki Hirota & Michio Miyajima & Kanehiro Hayashi & Takao Honda & Masashi Nishikawa & Yutaka Inaguma & Hidenori Ito & Hirohide Takeba, 2022. "Erratic and blood vessel-guided migration of astrocyte progenitors in the cerebral cortex," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    6. Johnna Doherty & Amy E Sheehan & Rachel Bradshaw & A Nicole Fox & Tsai-Yi Lu & Marc R Freeman, 2014. "PI3K Signaling and Stat92E Converge to Modulate Glial Responsiveness to Axonal Injury," PLOS Biology, Public Library of Science, vol. 12(11), pages 1-16, November.
    7. Ikuko Takeda & Kohei Yoshihara & Dennis L. Cheung & Tomoko Kobayashi & Masakazu Agetsuma & Makoto Tsuda & Kei Eto & Schuichi Koizumi & Hiroaki Wake & Andrew J. Moorhouse & Junichi Nabekura, 2022. "Controlled activation of cortical astrocytes modulates neuropathic pain-like behaviour," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Hsin-Ho Sung & Hsun Li & Yi-Chun Huang & Chun-Lu Ai & Ming-Yen Hsieh & Hau-Ming Jan & Yu-Ju Peng & Hsien-Ya Lin & Chih-Hsuan Yeh & Shu-Yu Lin & Chun-Yen Yeh & Ying-Ju Cheng & Kay-Hooi Khoo & Chun-Hung, 2024. "Galectins induced from hemocytes bridge phosphatidylserine and N-glycosylated Drpr/CED-1 receptor during dendrite pruning," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28777-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.