IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28146-6.html
   My bibliography  Save this article

Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting

Author

Listed:
  • Yu Qi

    (Chinese Academy of Sciences)

  • Jiangwei Zhang

    (Chinese Academy of Sciences)

  • Yuan Kong

    (University of Science and Technology of China)

  • Yue Zhao

    (Chinese Academy of Sciences)

  • Shanshan Chen

    (Shinshu University)

  • Deng Li

    (Chinese Academy of Sciences)

  • Wei Liu

    (Chinese Academy of Sciences)

  • Yifan Chen

    (Jilin University)

  • Tengfeng Xie

    (Jilin University)

  • Junyan Cui

    (Zhengzhou University)

  • Can Li

    (Chinese Academy of Sciences)

  • Kazunari Domen

    (Shinshu University
    The University of Tokyo)

  • Fuxiang Zhang

    (Chinese Academy of Sciences)

Abstract

Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.

Suggested Citation

  • Yu Qi & Jiangwei Zhang & Yuan Kong & Yue Zhao & Shanshan Chen & Deng Li & Wei Liu & Yifan Chen & Tengfeng Xie & Junyan Cui & Can Li & Kazunari Domen & Fuxiang Zhang, 2022. "Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28146-6
    DOI: 10.1038/s41467-022-28146-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28146-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28146-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lihua Lin & Yiwen Ma & Junie Jhon M. Vequizo & Mamiko Nakabayashi & Chen Gu & Xiaoping Tao & Hiroaki Yoshida & Yuriy Pihosh & Yuta Nishina & Akira Yamakata & Naoya Shibata & Takashi Hisatomi & Tsuyosh, 2024. "Efficient and stable visible-light-driven Z-scheme overall water splitting using an oxysulfide H2 evolution photocatalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Yan Yang & Xiaoyu Chu & Hong-Yu Zhang & Rui Zhang & Yu-Han Liu & Feng-Ming Zhang & Meng Lu & Zhao-Di Yang & Ya-Qian Lan, 2023. "Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jiadong Xiao & Mamiko Nakabayashi & Takashi Hisatomi & Junie Jhon M. Vequizo & Wenpeng Li & Kaihong Chen & Xiaoping Tao & Akira Yamakata & Naoya Shibata & Tsuyoshi Takata & Yasunobu Inoue & Kazunari D, 2023. "Sub-50 nm perovskite-type tantalum-based oxynitride single crystals with enhanced photoactivity for water splitting," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28146-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.