IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28045-w.html
   My bibliography  Save this article

A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments

Author

Listed:
  • Boyang Zhao

    (Pennsylvania State University
    Quantalarity Research Group)

  • Yiyun Rao

    (Huck Institute for the Life Sciences, Pennsylvania State University)

  • Scott Leighow

    (Pennsylvania State University)

  • Edward P. O’Brien

    (Pennsylvania State University)

  • Luke Gilbert

    (University of California at San Francisco
    University of California at San Francisco
    Helen Diller Family Comprehensive Cancer Center, San Francisco)

  • Justin R. Pritchard

    (Pennsylvania State University
    Huck Institute for the Life Sciences, Pennsylvania State University)

Abstract

A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to understand the biology of cell specificity. The prevailing viewpoint, synthetic lethality, occurs when a genetic alteration creates a unique CRISPR dependency. Here, we use machine learning for an unbiased investigation of cell type specificity. Quantifying model accuracy, we find that most cell type specific phenotypes are predicted by the function of related genes of wild-type sequence, not synthetic lethal relationships. These models then identify unexpected sets of 100-300 genes where reduced CRISPR measurements can produce genome-scale loss-of-function predictions across >18,000 genes. Thus, it is possible to reduce in vitro CRISPR libraries by orders of magnitude—with some information loss—when we remove redundant genes and not redundant sgRNAs.

Suggested Citation

  • Boyang Zhao & Yiyun Rao & Scott Leighow & Edward P. O’Brien & Luke Gilbert & Justin R. Pritchard, 2022. "A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28045-w
    DOI: 10.1038/s41467-022-28045-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28045-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28045-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fiona M. Behan & Francesco Iorio & Gabriele Picco & Emanuel Gonçalves & Charlotte M. Beaver & Giorgia Migliardi & Rita Santos & Yanhua Rao & Francesco Sassi & Marika Pinnelli & Rizwan Ansari & Sarah H, 2019. "Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens," Nature, Nature, vol. 568(7753), pages 511-516, April.
    2. Mandar Deepak Muzumdar & Pan-Yu Chen & Kimberly Judith Dorans & Katherine Minjee Chung & Arjun Bhutkar & Erin Hong & Elisa M. Noll & Martin R. Sprick & Andreas Trumpp & Tyler Jacks, 2017. "Survival of pancreatic cancer cells lacking KRAS function," Nature Communications, Nature, vol. 8(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexendar R. Perez & Laura Sala & Richard K. Perez & Joana A. Vidigal, 2021. "CSC software corrects off-target mediated gRNA depletion in CRISPR-Cas9 essentiality screens," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    3. Yimiao Feng & Yahui Long & He Wang & Yang Ouyang & Quan Li & Min Wu & Jie Zheng, 2024. "Benchmarking machine learning methods for synthetic lethality prediction in cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    5. Francesca Menghi & Edison T. Liu, 2022. "Functional genomics of complex cancer genomes," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    6. Sandor Spisak & David Chen & Pornlada Likasitwatanakul & Paul Doan & Zhixin Li & Pratyusha Bala & Laura Vizkeleti & Viktoria Tisza & Pushpamali Silva & Marios Giannakis & Brian Wolpin & Jun Qi & Nilay, 2024. "Identifying regulators of aberrant stem cell and differentiation activity in colorectal cancer using a dual endogenous reporter system," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Ming Yi & Ruoqing Zhu & Robert M Stephens, 2018. "GradientScanSurv—An exhaustive association test method for gene expression data with censored survival outcome," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-28, December.
    9. Ke Cong & Nathan MacGilvary & Silviana Lee & Shannon G. MacLeod & Jennifer Calvo & Min Peng & Arne Nedergaard Kousholt & Tovah A. Day & Sharon B. Cantor, 2024. "FANCJ promotes PARP1 activity during DNA replication that is essential in BRCA1 deficient cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Amy J. Heidersbach & Kristel M. Dorighi & Javier A. Gomez & Ashley M. Jacobi & Benjamin Haley, 2023. "A versatile, high-efficiency platform for CRISPR-based gene activation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Xiao Chen & Yinglu Li & Fang Zhu & Xinjing Xu & Brian Estrella & Manuel A. Pazos & John T. McGuire & Dimitris Karagiannis & Varun Sahu & Mustafo Mustafokulov & Claudio Scuoppo & Francisco J. Sánchez-R, 2023. "Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Irineos Papakyriacou & Ginte Kutkaite & Marta Rúbies Bedós & Divya Nagarajan & Liam P. Alford & Michael P. Menden & Yumeng Mao, 2024. "Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    16. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Peter C. DeWeirdt & Abby V. McGee & Fengyi Zheng & Ifunanya Nwolah & Mudra Hegde & John G. Doench, 2022. "Accounting for small variations in the tracrRNA sequence improves sgRNA activity predictions for CRISPR screening," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Ruitong Li & Olaf Klingbeil & Davide Monducci & Michael J. Young & Diego J. Rodriguez & Zaid Bayyat & Joshua M. Dempster & Devishi Kesar & Xiaoping Yang & Mahdi Zamanighomi & Christopher R. Vakoc & Ta, 2022. "Comparative optimization of combinatorial CRISPR screens," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Jurica Levatić & Marina Salvadores & Francisco Fuster-Tormo & Fran Supek, 2022. "Mutational signatures are markers of drug sensitivity of cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Umberto Perron & Elena Grassi & Aikaterini Chatzipli & Marco Viviani & Emre Karakoc & Lucia Trastulla & Lorenzo M. Brochier & Claudio Isella & Eugenia R. Zanella & Hagen Klett & Ivan Molineris & Julia, 2024. "Integrative ensemble modelling of cetuximab sensitivity in colorectal cancer patient-derived xenografts," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28045-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.