IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52900-7.html
   My bibliography  Save this article

Benchmarking machine learning methods for synthetic lethality prediction in cancer

Author

Listed:
  • Yimiao Feng

    (ShanghaiTech University
    Lingang Laboratory)

  • Yahui Long

    (Agency for Science, Technology and Research (A*STAR))

  • He Wang

    (ShanghaiTech University)

  • Yang Ouyang

    (ShanghaiTech University)

  • Quan Li

    (ShanghaiTech University)

  • Min Wu

    (Agency for Science, Technology and Research (A*STAR))

  • Jie Zheng

    (ShanghaiTech University
    Shanghai Engineering Research Center of Intelligent Vision and Imaging)

Abstract

Synthetic lethality (SL) is a gold mine of anticancer drug targets, exposing cancer-specific dependencies of cellular survival. To complement resource-intensive experimental screening, many machine learning methods for SL prediction have emerged recently. However, a comprehensive benchmarking is lacking. This study systematically benchmarks 12 recent machine learning methods for SL prediction, assessing their performance across diverse data splitting scenarios, negative sample ratios, and negative sampling techniques, on both classification and ranking tasks. We observe that all the methods can perform significantly better by improving data quality, e.g., excluding computationally derived SLs from training and sampling negative labels based on gene expression. Among the methods, SLMGAE performs the best. Furthermore, the methods have limitations in realistic scenarios such as cold-start independent tests and context-specific SLs. These results, together with source code and datasets made freely available, provide guidance for selecting suitable methods and developing more powerful techniques for SL virtual screening.

Suggested Citation

  • Yimiao Feng & Yahui Long & He Wang & Yang Ouyang & Quan Li & Min Wu & Jie Zheng, 2024. "Benchmarking machine learning methods for synthetic lethality prediction in cancer," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52900-7
    DOI: 10.1038/s41467-024-52900-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52900-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52900-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fiona M. Behan & Francesco Iorio & Gabriele Picco & Emanuel Gonçalves & Charlotte M. Beaver & Giorgia Migliardi & Rita Santos & Yanhua Rao & Francesco Sassi & Marika Pinnelli & Rizwan Ansari & Sarah H, 2019. "Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens," Nature, Nature, vol. 568(7753), pages 511-516, April.
    2. Joo Sang Lee & Avinash Das & Livnat Jerby-Arnon & Rand Arafeh & Noam Auslander & Matthew Davidson & Lynn McGarry & Daniel James & Arnaud Amzallag & Seung Gu Park & Kuoyuan Cheng & Welles Robinson & Di, 2018. "Harnessing synthetic lethality to predict the response to cancer treatment," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    3. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Biyu Zhang & Chen Tang & Yanli Yao & Xiaohan Chen & Chi Zhou & Zhiting Wei & Feiyang Xing & Lan Chen & Xiang Cai & Zhiyuan Zhang & Shuyang Sun & Qi Liu, 2021. "The tumor therapy landscape of synthetic lethality," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Prasenjit Dey & Joelle Baddour & Florian Muller & Chia Chin Wu & Huamin Wang & Wen-Ting Liao & Zangdao Lan & Alina Chen & Tony Gutschner & Yaan Kang & Jason Fleming & Nikunj Satani & Di Zhao & Abhinav, 2017. "Genomic deletion of malic enzyme 2 confers collateral lethality in pancreatic cancer," Nature, Nature, vol. 542(7639), pages 119-123, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Nazanin Esmaeili Anvar & Chenchu Lin & Xingdi Ma & Lori L. Wilson & Ryan Steger & Annabel K. Sangree & Medina Colic & Sidney H. Wang & John G. Doench & Traver Hart, 2024. "Efficient gene knockout and genetic interaction screening using the in4mer CRISPR/Cas12a multiplex knockout platform," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Alexendar R. Perez & Laura Sala & Richard K. Perez & Joana A. Vidigal, 2021. "CSC software corrects off-target mediated gRNA depletion in CRISPR-Cas9 essentiality screens," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Xuefeng Wang & Shuo Zhang & Yuqin liu, 2022. "ITGInsight–discovering and visualizing research fronts in the scientific literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6509-6531, November.
    5. Arindam Datta & Kajal Biswas & Joshua A. Sommers & Haley Thompson & Sanket Awate & Claudia M. Nicolae & Tanay Thakar & George-Lucian Moldovan & Robert H. Shoemaker & Shyam K. Sharan & Robert M. Brosh, 2021. "WRN helicase safeguards deprotected replication forks in BRCA2-mutated cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    6. Francesca Menghi & Edison T. Liu, 2022. "Functional genomics of complex cancer genomes," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    7. Sandor Spisak & David Chen & Pornlada Likasitwatanakul & Paul Doan & Zhixin Li & Pratyusha Bala & Laura Vizkeleti & Viktoria Tisza & Pushpamali Silva & Marios Giannakis & Brian Wolpin & Jun Qi & Nilay, 2024. "Identifying regulators of aberrant stem cell and differentiation activity in colorectal cancer using a dual endogenous reporter system," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Fei Li & Yizhe Wang & Inah Hwang & Ja-Young Jang & Libo Xu & Zhong Deng & Eun Young Yu & Yiming Cai & Caizhi Wu & Zhenbo Han & Yu-Han Huang & Xiangao Huang & Ling Zhang & Jun Yao & Neal F. Lue & Paul , 2023. "Histone demethylase KDM2A is a selective vulnerability of cancers relying on alternative telomere maintenance," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Ke Cong & Nathan MacGilvary & Silviana Lee & Shannon G. MacLeod & Jennifer Calvo & Min Peng & Arne Nedergaard Kousholt & Tovah A. Day & Sharon B. Cantor, 2024. "FANCJ promotes PARP1 activity during DNA replication that is essential in BRCA1 deficient cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Amy J. Heidersbach & Kristel M. Dorighi & Javier A. Gomez & Ashley M. Jacobi & Benjamin Haley, 2023. "A versatile, high-efficiency platform for CRISPR-based gene activation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Xiao Chen & Yinglu Li & Fang Zhu & Xinjing Xu & Brian Estrella & Manuel A. Pazos & John T. McGuire & Dimitris Karagiannis & Varun Sahu & Mustafo Mustafokulov & Claudio Scuoppo & Francisco J. Sánchez-R, 2023. "Context-defined cancer co-dependency mapping identifies a functional interplay between PRC2 and MLL-MEN1 complex in lymphoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Irineos Papakyriacou & Ginte Kutkaite & Marta Rúbies Bedós & Divya Nagarajan & Liam P. Alford & Michael P. Menden & Yumeng Mao, 2024. "Loss of NEDD8 in cancer cells causes vulnerability to immune checkpoint blockade in triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Taiqi Chen & Siyi Xie & Jie Cheng & Qiao Zhao & Hong Wu & Peng Jiang & Wenjing Du, 2024. "AKT1 phosphorylation of cytoplasmic ME2 induces a metabolic switch to glycolysis for tumorigenesis," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    15. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    16. Min Pan & William C. Wright & Richard H. Chapple & Asif Zubair & Manbir Sandhu & Jake E. Batchelder & Brandt C. Huddle & Jonathan Low & Kaley B. Blankenship & Yingzhe Wang & Brittney Gordon & Payton A, 2021. "The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    17. Hyeong-Min Lee & William C. Wright & Min Pan & Jonathan Low & Duane Currier & Jie Fang & Shivendra Singh & Stephanie Nance & Ian Delahunty & Yuna Kim & Richard H. Chapple & Yinwen Zhang & Xueying Liu , 2023. "A CRISPR-drug perturbational map for identifying compounds to combine with commonly used chemotherapeutics," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Peter C. DeWeirdt & Abby V. McGee & Fengyi Zheng & Ifunanya Nwolah & Mudra Hegde & John G. Doench, 2022. "Accounting for small variations in the tracrRNA sequence improves sgRNA activity predictions for CRISPR screening," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Ruitong Li & Olaf Klingbeil & Davide Monducci & Michael J. Young & Diego J. Rodriguez & Zaid Bayyat & Joshua M. Dempster & Devishi Kesar & Xiaoping Yang & Mahdi Zamanighomi & Christopher R. Vakoc & Ta, 2022. "Comparative optimization of combinatorial CRISPR screens," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Jurica Levatić & Marina Salvadores & Francisco Fuster-Tormo & Fran Supek, 2022. "Mutational signatures are markers of drug sensitivity of cancer cells," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52900-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.