IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27590-0.html
   My bibliography  Save this article

AI Pontryagin or how artificial neural networks learn to control dynamical systems

Author

Listed:
  • Lucas Böttcher

    (Frankfurt School of Finance and Management
    University of California, Los Angeles)

  • Nino Antulov-Fantulin

    (ETH Zurich)

  • Thomas Asikis

    (ETH Zurich)

Abstract

The efficient control of complex dynamical systems has many applications in the natural and applied sciences. In most real-world control problems, both control energy and cost constraints play a significant role. Although such optimal control problems can be formulated within the framework of variational calculus, their solution for complex systems is often analytically and computationally intractable. To overcome this outstanding challenge, we present AI Pontryagin, a versatile control framework based on neural ordinary differential equations that automatically learns control signals that steer high-dimensional dynamical systems towards a desired target state within a specified time interval. We demonstrate the ability of AI Pontryagin to learn control signals that closely resemble those found by corresponding optimal control frameworks in terms of control energy and deviation from the desired target state. Our results suggest that AI Pontryagin is capable of solving a wide range of control and optimization problems, including those that are analytically intractable.

Suggested Citation

  • Lucas Böttcher & Nino Antulov-Fantulin & Thomas Asikis, 2022. "AI Pontryagin or how artificial neural networks learn to control dynamical systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27590-0
    DOI: 10.1038/s41467-021-27590-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27590-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27590-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Author Correction: Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas Böttcher & Thomas Asikis & Ioannis Fragkos, 2023. "Control of Dual-Sourcing Inventory Systems Using Recurrent Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1308-1328, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    3. Hao Wu & Xiangyi Meng & Michael M. Danziger & Sean P. Cornelius & Hui Tian & Albert-László Barabási, 2022. "Fragmentation of outage clusters during the recovery of power distribution grids," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    5. Frasca, Mattia & Gambuzza, Lucia Valentina, 2021. "Control of cascading failures in dynamical models of power grids," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Benjamin Schäfer & Thiemo Pesch & Debsankha Manik & Julian Gollenstede & Guosong Lin & Hans-Peter Beck & Dirk Witthaut & Marc Timme, 2022. "Understanding Braess’ Paradox in power grids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Wu, Chengxing & Duan, Dongli, 2024. "Collapse process prediction of mutualistic dynamical networks with k-core and dimension reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    8. Gharebaghi, Sina & Chaudhuri, Nilanjan Ray & He, Ting & La Porta, Thomas, 2023. "An approach for fast cascading failure simulation in dynamic models of power systems," Applied Energy, Elsevier, vol. 332(C).
    9. Pei, Jianxin & Liu, Ying & Wang, Wei & Gong, Jie, 2021. "Cascading failures in multiplex network under flow redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    10. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Ricciardi, Gianmarco & Montagna, Guido & Caldarelli, Guido & Cimini, Giulio, 2023. "Dimensional reduction of solvency contagion dynamics on financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    12. Lee, Yongsun & Choi, Hoyun & Pagnier, Laurent & Kim, Cook Hyun & Lee, Jongshin & Jhun, Bukyoung & Kim, Heetae & Kurths, Jürgen & Kahng, B., 2024. "Reinforcement learning optimizes power dispatch in decentralized power grid," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    13. Penny Mealy & Pete Barbrook-Johnson & Matthew C Ives & Sugandha Srivastav & Cameron Hepburn, 2023. "Sensitive intervention points: a strategic approach to climate action," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 39(4), pages 694-710.
    14. Xiao, Feng & Li, Jin & Wei, Bo, 2022. "Cascading failure analysis and critical node identification in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    15. Qu, Junyi & Liu, Ying & Tang, Ming & Guan, Shuguang, 2022. "Identification of the most influential stocks in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    16. Sagnik Basumallik & Sara Eftekharnejad & Makan Fardad, 2022. "Controlled Islanding under Complete and Partial False Data Injection Attack Uncertainties against Phasor Measurement Units," Energies, MDPI, vol. 15(15), pages 1-27, August.
    17. Ren, Haoshan & Gao, Dian-ce & Ma, Zhenjun & Zhang, Sheng & Sun, Yongjun, 2024. "Data-driven surrogate optimization for deploying heterogeneous multi-energy storage to improve demand response performance at building cluster level," Applied Energy, Elsevier, vol. 356(C).
    18. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Zhu, Yanpeng & Chen, Lei & Jia, Chun-Xiao & Meng, Fanyuan & Liu, Run-Ran, 2023. "Non-Markovian node fragility in cascading failures on random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Liang, Yuanyuan & Xia, Yongxiang & Yang, Xu-Hua, 2022. "Hybrid-radius spatial network model and its robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27590-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.