IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008452.html
   My bibliography  Save this article

Reinforcement learning optimizes power dispatch in decentralized power grid

Author

Listed:
  • Lee, Yongsun
  • Choi, Hoyun
  • Pagnier, Laurent
  • Kim, Cook Hyun
  • Lee, Jongshin
  • Jhun, Bukyoung
  • Kim, Heetae
  • Kurths, Jürgen
  • Kahng, B.

Abstract

Effective frequency control in power grids has become increasingly important with the increasing demand for renewable energy sources. Here, we propose a novel strategy for resolving this challenge using graph convolutional proximal policy optimization (GC-PPO). The GC-PPO method can optimally determine how much power individual buses dispatch to reduce frequency fluctuations across a power grid. We demonstrate its efficacy in controlling disturbances by applying the GC-PPO to the power grid of the UK. The performance of GC-PPO is outstanding compared to the classical methods. This result highlights the promising role of GC-PPO in enhancing the stability and reliability of power systems by switching lines or decentralizing grid topology.

Suggested Citation

  • Lee, Yongsun & Choi, Hoyun & Pagnier, Laurent & Kim, Cook Hyun & Lee, Jongshin & Jhun, Bukyoung & Kim, Heetae & Kurths, Jürgen & Kahng, B., 2024. "Reinforcement learning optimizes power dispatch in decentralized power grid," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008452
    DOI: 10.1016/j.chaos.2024.115293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Schäfer & Thiemo Pesch & Debsankha Manik & Julian Gollenstede & Guosong Lin & Hans-Peter Beck & Dirk Witthaut & Marc Timme, 2022. "Understanding Braess’ Paradox in power grids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    3. Katrin Schmietendorf & Joachim Peinke & Oliver Kamps, 2017. "The impact of turbulent renewable energy production on power grid stability and quality," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(11), pages 1-6, November.
    4. Benjamin Schäfer & Christian Beck & Kazuyuki Aihara & Dirk Witthaut & Marc Timme, 2018. "Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics," Nature Energy, Nature, vol. 3(2), pages 119-126, February.
    5. Peter J. Menck & Jobst Heitzig & Jürgen Kurths & Hans Joachim Schellnhuber, 2014. "How dead ends undermine power grid stability," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    6. Azalia Mirhoseini & Anna Goldie & Mustafa Yazgan & Joe Wenjie Jiang & Ebrahim Songhori & Shen Wang & Young-Joon Lee & Eric Johnson & Omkar Pathak & Azade Nova & Jiwoo Pak & Andy Tong & Kavya Srinivasa, 2021. "A graph placement methodology for fast chip design," Nature, Nature, vol. 594(7862), pages 207-212, June.
    7. Heide, Dominik & Greiner, Martin & von Bremen, Lüder & Hoffmann, Clemens, 2011. "Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation," Renewable Energy, Elsevier, vol. 36(9), pages 2515-2523.
    8. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    9. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Author Correction: Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    2. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Hao Wu & Xiangyi Meng & Michael M. Danziger & Sean P. Cornelius & Hui Tian & Albert-László Barabási, 2022. "Fragmentation of outage clusters during the recovery of power distribution grids," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Benjamin Schäfer & Thiemo Pesch & Debsankha Manik & Julian Gollenstede & Guosong Lin & Hans-Peter Beck & Dirk Witthaut & Marc Timme, 2022. "Understanding Braess’ Paradox in power grids," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Wu, Chengxing & Duan, Dongli, 2024. "Collapse process prediction of mutualistic dynamical networks with k-core and dimension reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Gharebaghi, Sina & Chaudhuri, Nilanjan Ray & He, Ting & La Porta, Thomas, 2023. "An approach for fast cascading failure simulation in dynamic models of power systems," Applied Energy, Elsevier, vol. 332(C).
    7. Pei, Jianxin & Liu, Ying & Wang, Wei & Gong, Jie, 2021. "Cascading failures in multiplex network under flow redistribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Xiao, Feng & Li, Jin & Wei, Bo, 2022. "Cascading failure analysis and critical node identification in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    9. Qu, Junyi & Liu, Ying & Tang, Ming & Guan, Shuguang, 2022. "Identification of the most influential stocks in financial networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Sagnik Basumallik & Sara Eftekharnejad & Makan Fardad, 2022. "Controlled Islanding under Complete and Partial False Data Injection Attack Uncertainties against Phasor Measurement Units," Energies, MDPI, vol. 15(15), pages 1-27, August.
    11. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Zhu, Yanpeng & Chen, Lei & Jia, Chun-Xiao & Meng, Fanyuan & Liu, Run-Ran, 2023. "Non-Markovian node fragility in cascading failures on random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    13. Olmi, Simona & Gambuzza, Lucia Valentina & Frasca, Mattia, 2024. "Multilayer control of synchronization and cascading failures in power grids," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    15. Frasca, Mattia & Gambuzza, Lucia Valentina, 2021. "Control of cascading failures in dynamical models of power grids," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    16. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Lucas Böttcher & Nino Antulov-Fantulin & Thomas Asikis, 2022. "AI Pontryagin or how artificial neural networks learn to control dynamical systems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Ricciardi, Gianmarco & Montagna, Guido & Caldarelli, Guido & Cimini, Giulio, 2023. "Dimensional reduction of solvency contagion dynamics on financial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    19. Penny Mealy & Pete Barbrook-Johnson & Matthew C Ives & Sugandha Srivastav & Cameron Hepburn, 2023. "Sensitive intervention points: a strategic approach to climate action," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 39(4), pages 694-710.
    20. Ren, Haoshan & Gao, Dian-ce & Ma, Zhenjun & Zhang, Sheng & Sun, Yongjun, 2024. "Data-driven surrogate optimization for deploying heterogeneous multi-energy storage to improve demand response performance at building cluster level," Applied Energy, Elsevier, vol. 356(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.