IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27368-4.html
   My bibliography  Save this article

A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent

Author

Listed:
  • Yin Chen

    (Sun Yat-sen University
    The Hong Kong University of Science and Technology)

  • Peng Gao

    (Southwest Jiaotong University)

  • Lu Huang

    (Sun Yat-sen University)

  • Xing Tan

    (Southwest Jiaotong University)

  • Ningling Zhou

    (Southwest Jiaotong University)

  • Tong Yang

    (Southwest Jiaotong University)

  • Hua Qiu

    (Southwest Jiaotong University)

  • Xin Dai

    (The Hong Kong University of Science and Technology)

  • Sean Michael

    (The Hong Kong University of Science and Technology)

  • Qiufen Tu

    (Southwest Jiaotong University)

  • Nan Huang

    (Southwest Jiaotong University)

  • Zhihong Guo

    (The Hong Kong University of Science and Technology)

  • Jianhua Zhou

    (Sun Yat-sen University
    Division of Engineering in Medicine, Brigham and Women’s Hospital, Harvard Medical School)

  • Zhilu Yang

    (Southwest Jiaotong University)

  • Hongkai Wu

    (The Hong Kong University of Science and Technology)

Abstract

Vascular stent is viewed as one of the greatest advancements in interventional cardiology. However, current approved stents suffer from in-stent restenosis associated with neointimal hyperplasia or stent thrombosis. Herein, we develop a nitric oxide-eluting (NOE) hydrogel coating for vascular stents inspired by the biological functions of nitric oxide for cardiovascular system. Our NOE hydrogel is mechanically tough and could selectively facilitate the adhesion of endothelial cells. Besides, it is non-thrombotic and capable of inhibiting smooth muscle cells. Transcriptome analysis unravels the NOE hydrogel could modulate the inflammatory response and induce the relaxation of smooth muscle cells. In vivo study further demonstrates vascular stents coated with it promote rapid restoration of native endothelium, and persistently suppress inflammation and neointimal hyperplasia in both leporine and swine models. We expect such NOE hydrogel will open an avenue to the surface engineering of vascular implants for better clinical outcomes.

Suggested Citation

  • Yin Chen & Peng Gao & Lu Huang & Xing Tan & Ningling Zhou & Tong Yang & Hua Qiu & Xin Dai & Sean Michael & Qiufen Tu & Nan Huang & Zhihong Guo & Jianhua Zhou & Zhilu Yang & Hongkai Wu, 2021. "A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27368-4
    DOI: 10.1038/s41467-021-27368-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27368-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27368-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qingxin Yao & Feng Lin & Xinyuan Fan & Yanpu Wang & Ye Liu & Zhaofei Liu & Xingyu Jiang & Peng R. Chen & Yuan Gao, 2018. "Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Jordan J. Green & Jennifer H. Elisseeff, 2016. "Mimicking biological functionality with polymers for biomedical applications," Nature, Nature, vol. 540(7633), pages 386-394, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoshuang Wu & Li Yang & Rifang Luo & Li Li & Tiantian Zheng & Kaiyang Huang & Yumei Qin & Xia Yang & Xingdong Zhang & Yunbing Wang, 2024. "A drug-free cardiovascular stent functionalized with tailored collagen supports in-situ healing of vascular tissues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mei Zhu & Shengliang Wang & Zhenhui Li & Junbo Li & Zhijun Xu & Xiaoman Liu & Xin Huang, 2023. "Tyrosine residues initiated photopolymerization in living organisms," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yawen You & Qingqing Deng & Yibo Wang & Yanjuan Sang & Guangming Li & Fang Pu & Jinsong Ren & Xiaogang Qu, 2022. "DNA-based platform for efficient and precisely targeted bioorthogonal catalysis in living systems," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Jiawei Sun & Sandra Kleuskens & Jiabin Luan & Danni Wang & Shaohua Zhang & Wei Li & Gizem Uysal & Daniela A. Wilson, 2023. "Morphogenesis of starfish polymersomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Xinyu He & Jie Li & Xinxin Liang & Wuyu Mao & Xinglong Deng & Meng Qin & Hao Su & Haoxing Wu, 2024. "An all-in-one tetrazine reagent for cysteine-selective labeling and bioorthogonal activable prodrug construction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Xiaokang Zhang & Mengkui Cui & Shuoshuo Wang & Fei Han & Pingping Xu & Luyao Teng & Hang Zhao & Ping Wang & Guichu Yue & Yong Zhao & Guangfeng Liu & Ke Li & Jicong Zhang & Xiaoping Liang & Yingying Zh, 2022. "Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yihong Zhong & Lijia Xu & Chen Yang & Le Xu & Guyu Wang & Yuna Guo & Songtao Cheng & Xiao Tian & Changjiang Wang & Ran Xie & Xiaojian Wang & Lin Ding & Huangxian Ju, 2023. "Site-selected in situ polymerization for living cell surface engineering," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27368-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.