IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27265-w.html
   My bibliography  Save this article

Legless soft robots capable of rapid, continuous, and steered jumping

Author

Listed:
  • Rui Chen

    (Chongqing University)

  • Zean Yuan

    (Chongqing University)

  • Jianglong Guo

    (Harbin Institute of Technology (Shenzhen))

  • Long Bai

    (Chongqing University)

  • Xinyu Zhu

    (Chongqing University)

  • Fuqiang Liu

    (Chongqing University)

  • Huayan Pu

    (Shanghai University)

  • Liming Xin

    (Shanghai University)

  • Yan Peng

    (Shanghai University)

  • Jun Luo

    (Chongqing University
    Shanghai University)

  • Li Wen

    (Beihang University)

  • Yu Sun

    (University of Toronto)

Abstract

Jumping is an important locomotion function to extend navigation range, overcome obstacles, and adapt to unstructured environments. In that sense, continuous jumping and direction adjustability can be essential properties for terrestrial robots with multimodal locomotion. However, only few soft jumping robots can achieve rapid continuous jumping and controlled turning locomotion for obstacle crossing. Here, we present an electrohydrostatically driven tethered legless soft jumping robot capable of rapid, continuous, and steered jumping based on a soft electrohydrostatic bending actuator. This 1.1 g and 6.5 cm tethered soft jumping robot is able to achieve a jumping height of 7.68 body heights and a continuous forward jumping speed of 6.01 body lengths per second. Combining two actuator units, it can achieve rapid turning with a speed of 138.4° per second. The robots are also demonstrated to be capable of skipping across a multitude of obstacles. This work provides a foundation for the application of electrohydrostatic actuation in soft robots for agile and fast multimodal locomotion.

Suggested Citation

  • Rui Chen & Zean Yuan & Jianglong Guo & Long Bai & Xinyu Zhu & Fuqiang Liu & Huayan Pu & Liming Xin & Yan Peng & Jun Luo & Li Wen & Yu Sun, 2021. "Legless soft robots capable of rapid, continuous, and steered jumping," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27265-w
    DOI: 10.1038/s41467-021-27265-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27265-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27265-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenishbek Zhakypov & Kazuaki Mori & Koh Hosoda & Jamie Paik, 2019. "Designing minimal and scalable insect-inspired multi-locomotion millirobots," Nature, Nature, vol. 571(7765), pages 381-386, July.
    2. Wenqi Hu & Guo Zhan Lum & Massimo Mastrangeli & Metin Sitti, 2018. "Small-scale soft-bodied robot with multimodal locomotion," Nature, Nature, vol. 554(7690), pages 81-85, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiji Ze & Shuai Wu & Jize Dai & Sophie Leanza & Gentaro Ikeda & Phillip C. Yang & Gianluca Iaccarino & Ruike Renee Zhao, 2022. "Spinning-enabled wireless amphibious origami millirobot," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jinfeng Liu & Xiangyu Gao & Haonan Jin & Kaile Ren & Jingyu Guo & Liao Qiao & Chaorui Qiu & Wei Chen & Yuhang He & Shuxiang Dong & Zhuo Xu & Fei Li, 2022. "Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Dezhao Lin & Fan Yang & Di Gong & Ruihong Li, 2023. "Bio-inspired magnetic-driven folded diaphragm for biomimetic robot," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Qing Li Zhu & Weixuan Liu & Olena Khoruzhenko & Josef Breu & Wei Hong & Qiang Zheng & Zi Liang Wu, 2024. "Animating hydrogel knotbots with topology-invoked self-regulation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Baofu Ding & Pengyuan Zeng & Ziyang Huang & Lixin Dai & Tianshu Lan & Hao Xu & Yikun Pan & Yuting Luo & Qiangmin Yu & Hui-Ming Cheng & Bilu Liu, 2022. "A 2D material–based transparent hydrogel with engineerable interference colours," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Yuxuan Sun & Liu Wang & Yangyang Ni & Huajian Zhang & Xiang Cui & Jiahao Li & Yinbo Zhu & Ji Liu & Shiwu Zhang & Yong Chen & Mujun Li, 2023. "3D printing of thermosets with diverse rheological and functional applicabilities," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Xingxing Ke & Haochen Yong & Fukang Xu & Han Ding & Zhigang Wu, 2024. "Stenus-inspired, swift, and agile untethered insect-scale soft propulsors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Yubing Guo & Jiachen Zhang & Wenqi Hu & Muhammad Turab Ali Khan & Metin Sitti, 2021. "Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Ren Hao Soon & Zhen Yin & Metin Alp Dogan & Nihal Olcay Dogan & Mehmet Efe Tiryaki & Alp Can Karacakol & Asli Aydin & Pouria Esmaeili-Dokht & Metin Sitti, 2023. "Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Serena Arnaboldi & Gerardo Salinas & Sabrina Bichon & Sebastien Gounel & Nicolas Mano & Alexander Kuhn, 2023. "Bi-enzymatic chemo-mechanical feedback loop for continuous self-sustained actuation of conducting polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Van Hiep Nguyen & Saewoong Oh & Manmatha Mahato & Rassoul Tabassian & Hyunjoon Yoo & Seong-Gyu Lee & Mousumi Garai & Kwang Jin Kim & Il-Kwon Oh, 2024. "Functionally antagonistic polyelectrolyte for electro-ionic soft actuator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Wenfei Ai & Kai Hou & Jiaxin Wu & Yue Long & Kai Song, 2024. "Miniaturized and untethered McKibben muscles based on photothermal-induced gas-liquid transformation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Yifeng Shen & Dongdong Jin & Mingming Fu & Sanhu Liu & Zhiwu Xu & Qinghua Cao & Bo Wang & Guoqiang Li & Wenjun Chen & Shaoqin Liu & Xing Ma, 2023. "Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Xiong Yang & Rong Tan & Haojian Lu & Toshio Fukuda & Yajing Shen, 2022. "Milli-scale cellular robots that can reconfigure morphologies and behaviors simultaneously," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Mengmeng Sun & Bo Hao & Shihao Yang & Xin Wang & Carmel Majidi & Li Zhang, 2022. "Exploiting ferrofluidic wetting for miniature soft machines," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    17. Chenghai Li & Qiguang He & Yang Wang & Zhijian Wang & Zijun Wang & Raja Annapooranan & Michael I. Latz & Shengqiang Cai, 2022. "Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    18. Yunlong Qiu & Haiyang Wu & Yuntong Dai & Kai Li, 2024. "Behavior Prediction and Inverse Design for Self-Rotating Skipping Ropes Based on Random Forest and Neural Network," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
    19. Cornel Dillinger & Nitesh Nama & Daniel Ahmed, 2021. "Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    20. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27265-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.