IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v571y2019i7765d10.1038_s41586-019-1388-8.html
   My bibliography  Save this article

Designing minimal and scalable insect-inspired multi-locomotion millirobots

Author

Listed:
  • Zhenishbek Zhakypov

    (Swiss Federal Institute of Technology Lausanne)

  • Kazuaki Mori

    (Osaka University)

  • Koh Hosoda

    (Osaka University)

  • Jamie Paik

    (Swiss Federal Institute of Technology Lausanne)

Abstract

In ant colonies, collectivity enables division of labour and resources1–3 with great scalability. Beyond their intricate social behaviours, individuals of the genus Odontomachus4, also known as trap-jaw ants, have developed remarkable multi-locomotion mechanisms to ‘escape-jump’ upwards when threatened, using the sudden snapping of their mandibles5, and to negotiate obstacles by leaping forwards using their legs6. Emulating such diverse insect biomechanics and studying collective behaviours in a variety of environments may lead to the development of multi-locomotion robotic collectives deployable in situations such as emergency relief, exploration and monitoring7; however, reproducing these abilities in small-scale robotic systems with simple design and scalability remains a key challenge. Existing robotic collectives8–12 are confined to two-dimensional surfaces owing to limited locomotion, and individual multi-locomotion robots13–17 are difficult to scale up to large groups owing to the increased complexity, size and cost of hardware designs, which hinder mass production. Here we demonstrate an autonomous multi-locomotion insect-scale robot (millirobot) inspired by trap-jaw ants that addresses the design and scalability challenges of small-scale terrestrial robots. The robot’s compact locomotion mechanism is constructed with minimal components and assembly steps, has tunable power requirements, and realizes five distinct gaits: vertical jumping for height, horizontal jumping for distance, somersault jumping to clear obstacles, walking on textured terrain and crawling on flat surfaces. The untethered, battery-powered millirobot can selectively switch gaits to traverse diverse terrain types, and groups of millirobots can operate collectively to manipulate objects and overcome obstacles. We constructed the ten-gram palm-sized prototype—the smallest and lightest self-contained multi-locomotion robot reported so far—by folding a quasi-two-dimensional metamaterial18 sandwich formed of easily integrated mechanical, material and electronic layers, which will enable assembly-free mass-manufacturing of robots with high task efficiency, flexibility and disposability.

Suggested Citation

  • Zhenishbek Zhakypov & Kazuaki Mori & Koh Hosoda & Jamie Paik, 2019. "Designing minimal and scalable insect-inspired multi-locomotion millirobots," Nature, Nature, vol. 571(7765), pages 381-386, July.
  • Handle: RePEc:nat:nature:v:571:y:2019:i:7765:d:10.1038_s41586-019-1388-8
    DOI: 10.1038/s41586-019-1388-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-019-1388-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-019-1388-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiji Ze & Shuai Wu & Jize Dai & Sophie Leanza & Gentaro Ikeda & Phillip C. Yang & Gianluca Iaccarino & Ruike Renee Zhao, 2022. "Spinning-enabled wireless amphibious origami millirobot," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Rui Chen & Zean Yuan & Jianglong Guo & Long Bai & Xinyu Zhu & Fuqiang Liu & Huayan Pu & Liming Xin & Yan Peng & Jun Luo & Li Wen & Yu Sun, 2021. "Legless soft robots capable of rapid, continuous, and steered jumping," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jinfeng Liu & Xiangyu Gao & Haonan Jin & Kaile Ren & Jingyu Guo & Liao Qiao & Chaorui Qiu & Wei Chen & Yuhang He & Shuxiang Dong & Zhuo Xu & Fei Li, 2022. "Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Dongjin Kim & Baekgyeom Kim & Bongsu Shin & Dongwook Shin & Chang-Kun Lee & Jae-Seung Chung & Juwon Seo & Yun-Tae Kim & Geeyoung Sung & Wontaek Seo & Sunil Kim & Sunghoon Hong & Sungwoo Hwang & Seungy, 2022. "Actuating compact wearable augmented reality devices by multifunctional artificial muscle," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:571:y:2019:i:7765:d:10.1038_s41586-019-1388-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.