IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27123-9.html
   My bibliography  Save this article

Chromatin network retards nucleoli coalescence

Author

Listed:
  • Yifeng Qi

    (Massachusetts Institute of Technology)

  • Bin Zhang

    (Massachusetts Institute of Technology)

Abstract

Nuclear bodies are membraneless condensates that may form via liquid-liquid phase separation. The viscoelastic chromatin network could impact their stability and may hold the key for understanding experimental observations that defy predictions of classical theories. However, quantitative studies on the role of the chromatin network in phase separation have remained challenging. Using a diploid human genome model parameterized with chromosome conformation capture (Hi-C) data, we study the thermodynamics and kinetics of nucleoli formation. Dynamical simulations predict the formation of multiple droplets for nucleolar particles that experience specific interactions with nucleolus-associated domains (NADs). Coarsening dynamics, surface tension, and coalescence kinetics of the simulated droplets are all in quantitative agreement with experimental measurements for nucleoli. Free energy calculations further support that a two-droplet state, often observed for nucleoli in somatic cells, is metastable and separated from the single-droplet state with an entropic barrier. Our study suggests that nucleoli-chromatin interactions facilitate droplets’ nucleation but hinder their coarsening due to the coupled motion between droplets and the chromatin network: as droplets coalesce, the chromatin network becomes increasingly constrained. Therefore, the chromatin network supports a nucleation and arrest mechanism to stabilize the multi-droplet state for nucleoli and possibly for other nuclear bodies.

Suggested Citation

  • Yifeng Qi & Bin Zhang, 2021. "Chromatin network retards nucleoli coalescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27123-9
    DOI: 10.1038/s41467-021-27123-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27123-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27123-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Adam G. Larson & Daniel Elnatan & Madeline M. Keenen & Michael J. Trnka & Jonathan B. Johnston & Alma L. Burlingame & David A. Agard & Sy Redding & Geeta J. Narlikar, 2017. "Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin," Nature, Nature, vol. 547(7662), pages 236-240, July.
    2. Tim J. Stevens & David Lando & Srinjan Basu & Liam P. Atkinson & Yang Cao & Steven F. Lee & Martin Leeb & Kai J. Wohlfahrt & Wayne Boucher & Aoife O’Shaughnessy-Kirwan & Julie Cramard & Andre J. Faure, 2017. "3D structures of individual mammalian genomes studied by single-cell Hi-C," Nature, Nature, vol. 544(7648), pages 59-64, April.
    3. Robert D. Phair & Tom Misteli, 2000. "High mobility of proteins in the mammalian cell nucleus," Nature, Nature, vol. 404(6778), pages 604-609, April.
    4. Amy R. Strom & Alexander V. Emelyanov & Mustafa Mir & Dmitry V. Fyodorov & Xavier Darzacq & Gary H. Karpen, 2017. "Phase separation drives heterochromatin domain formation," Nature, Nature, vol. 547(7662), pages 241-245, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin Peng & Ziliang Huang & Kun Sun & Yahan Liu & Chi Woo Yoon & Reed E. S. Harrison & Danielle L. Schmitt & Linshan Zhu & Yiqian Wu & Ipek Tasan & Huimin Zhao & Jin Zhang & Sheng Zhong & Shu Chien & Y, 2022. "Engineering inducible biomolecular assemblies for genome imaging and manipulation in living cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Gillie Benchorin & Richard Jangwon Cho & Maggie Jiaqi Li & Natalia Molotkova & Minoree Kohwi, 2024. "Dan forms condensates in neuroblasts and regulates nuclear architecture and progenitor competence in vivo," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Andrew Z. Lin & Kiersten M. Ruff & Furqan Dar & Ameya Jalihal & Matthew R. King & Jared M. Lalmansingh & Ammon E. Posey & Nadia A. Erkamp & Ian Seim & Amy S. Gladfelter & Rohit V. Pappu, 2023. "Dynamical control enables the formation of demixed biomolecular condensates," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Jason X. Liu & Mikko P. Haataja & Andrej Košmrlj & Sujit S. Datta & Craig B. Arnold & Rodney D. Priestley, 2023. "Liquid–liquid phase separation within fibrillar networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Judith H. I. Haarhuis & Robin H. Weide & Vincent A. Blomen & Koen D. Flach & Hans Teunissen & Laureen Willems & Thijn R. Brummelkamp & Benjamin D. Rowland & Elzo Wit, 2022. "A Mediator-cohesin axis controls heterochromatin domain formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Wenqi Sun & Qianhua Dong & Xueqing Li & Jinxin Gao & Xianwen Ye & Chunyi Hu & Fei Li & Yong Chen, 2024. "The SUN-family protein Sad1 mediates heterochromatin spatial organization through interaction with histone H2A-H2B," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Hye Ji Cha & Özgün Uyan & Yan Kai & Tianxin Liu & Qian Zhu & Zuzana Tothova & Giovanni A. Botten & Jian Xu & Guo-Cheng Yuan & Job Dekker & Stuart H. Orkin, 2021. "Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Taehyun Kim & Jaeyoon Yoo & Sungho Do & Dong Soo Hwang & YongKeun Park & Yongdae Shin, 2023. "RNA-mediated demixing transition of low-density condensates," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Catherine Naughton & Covadonga Huidobro & Claudia R. Catacchio & Adam Buckle & Graeme R. Grimes & Ryu-Suke Nozawa & Stefania Purgato & Mariano Rocchi & Nick Gilbert, 2022. "Human centromere repositioning activates transcription and opens chromatin fibre structure," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Pan Jia & Xiang Li & Xuelei Wang & Liangjiao Yao & Yingying Xu & Yu Hu & Wenwen Xu & Zhe He & Qifan Zhao & Yicong Deng & Yi Zang & Meiyu Zhang & Yan Zhang & Jun Qin & Wei Lu, 2021. "ZMYND8 mediated liquid condensates spatiotemporally decommission the latent super-enhancers during macrophage polarization," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    7. Clara Lopes Novo & Emily V. Wong & Colin Hockings & Chetan Poudel & Eleanor Sheekey & Meike Wiese & Hanneke Okkenhaug & Simon J. Boulton & Srinjan Basu & Simon Walker & Gabriele S. Kaminski Schierle &, 2022. "Satellite repeat transcripts modulate heterochromatin condensates and safeguard chromosome stability in mouse embryonic stem cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Gillie Benchorin & Richard Jangwon Cho & Maggie Jiaqi Li & Natalia Molotkova & Minoree Kohwi, 2024. "Dan forms condensates in neuroblasts and regulates nuclear architecture and progenitor competence in vivo," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    10. Surya K Ghosh & Daniel Jost, 2018. "How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
    11. Amanda Ames & Melissa Seman & Ajay Larkin & Gulzhan Raiymbek & Ziyuan Chen & Alex Levashkevich & Bokyung Kim & Julie Suzanne Biteen & Kaushik Ragunathan, 2024. "Epigenetic memory is governed by an effector recruitment specificity toggle in Heterochromatin Protein 1," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    12. Khalil Joron & Juliane Oliveira Viegas & Liam Haas-Neill & Sariel Bier & Paz Drori & Shani Dvir & Patrick Siang Lin Lim & Sarah Rauscher & Eran Meshorer & Eitan Lerner, 2023. "Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Lisa Streit & Timo Kuhn & Thomas Vomhof & Verena Bopp & Albert C. Ludolph & Jochen H. Weishaupt & J. Christof M. Gebhardt & Jens Michaelis & Karin M. Danzer, 2022. "Stress induced TDP-43 mobility loss independent of stress granules," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Ting Peng & Yingping Hou & Haowei Meng & Yong Cao & Xiaotian Wang & Lumeng Jia & Qing Chen & Yang Zheng & Yujie Sun & Hebing Chen & Tingting Li & Cheng Li, 2023. "Mapping nucleolus-associated chromatin interactions using nucleolus Hi-C reveals pattern of heterochromatin interactions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Akiko Doi & Gianmarco D. Suarez & Rita Droste & H. Robert Horvitz, 2023. "A DEAD-box helicase drives the partitioning of a pro-differentiation NAB protein into nuclear foci," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Guillermo A. Orsi & Maxime M. C. Tortora & Béatrice Horard & Dominique Baas & Jean-Philippe Kleman & Jonas Bucevičius & Gražvydas Lukinavičius & Daniel Jost & Benjamin Loppin, 2023. "Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Jorine M. Eeftens & Manya Kapoor & Davide Michieletto & Clifford P. Brangwynne, 2021. "Polycomb condensates can promote epigenetic marks but are not required for sustained chromatin compaction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Da Lin & Weize Xu & Ping Hong & Chengchao Wu & Zhihui Zhang & Siheng Zhang & Lingyu Xing & Bing Yang & Wei Zhou & Qin Xiao & Jinyue Wang & Cong Wang & Yu He & Xi Chen & Xiaojian Cao & Jiangwei Man & A, 2022. "Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    19. Jessen V. Bredeson & Austin B. Mudd & Sofia Medina-Ruiz & Therese Mitros & Owen Kabnick Smith & Kelly E. Miller & Jessica B. Lyons & Sanjit S. Batra & Joseph Park & Kodiak C. Berkoff & Christopher Plo, 2024. "Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Manisha Poudyal & Komal Patel & Laxmikant Gadhe & Ajay Singh Sawner & Pradeep Kadu & Debalina Datta & Semanti Mukherjee & Soumik Ray & Ambuja Navalkar & Siddhartha Maiti & Debdeep Chatterjee & Jyoti D, 2023. "Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27123-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.