IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26968-4.html
   My bibliography  Save this article

Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice

Author

Listed:
  • Eun-Hwa Lee

    (Ewha Womans University)

  • Jin-Young Park

    (Ewha Womans University)

  • Hye-Jin Kwon

    (Ewha Womans University)

  • Pyung-Lim Han

    (Ewha Womans University
    Ewha Womans University)

Abstract

Chronic stress induces adaptive changes in the brain via the cumulative action of glucocorticoids, which is associated with mood disorders. Here we show that repeated daily five-minute restraint resolves pre-existing stress-induced depressive-like behavior in mice. Repeated injection of glucocorticoids in low doses mimics the anti-depressive effects of short-term stress. Repeated exposure to short-term stress and injection of glucocorticoids activate neurons in largely overlapping regions of the brain, as shown by c-Fos staining, and reverse distinct stress-induced gene expression profiles. Chemogenetic inhibition of neurons in the prelimbic cortex projecting to the nucleus accumbens, basolateral amygdala, or bed nucleus of the stria terminalis results in anti-depressive effects similarly to short-term stress exposure, while only inhibition of neurons in the prelimbic cortex projecting to the bed nucleus of the stria terminalis rescues defective glucocorticoid release. In summary, we show that short-term stress can reverse adaptively altered stress gains and resolve stress-induced depressive-like behavior.

Suggested Citation

  • Eun-Hwa Lee & Jin-Young Park & Hye-Jin Kwon & Pyung-Lim Han, 2021. "Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26968-4
    DOI: 10.1038/s41467-021-26968-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26968-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26968-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rosemary C. Bagot & Eric M. Parise & Catherine J. Peña & Hong-Xing Zhang & Ian Maze & Dipesh Chaudhury & Brianna Persaud & Roger Cachope & Carlos A. Bolaños-Guzmán & Joseph F. Cheer & Karl Deisseroth , 2015. "Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    2. Rosemary C. Bagot & Eric M. Parise & Catherine J. Peña & Hong-Xing Zhang & Ian Maze & Dipesh Chaudhury & Brianna Persaud & Roger Cachope & Carlos A. Bolaños-Guzmán & Joseph F. Cheer & Karl Deisseroth , 2015. "Correction: Corrigendum: Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression," Nature Communications, Nature, vol. 6(1), pages 1-1, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ya-Wei Ji & Zi-Lin Shen & Xue Zhang & Kairan Zhang & Tao Jia & Xiangying Xu & Huizhen Geng & Yu Han & Cui Yin & Jian-Jun Yang & Jun-Li Cao & Chunyi Zhou & Cheng Xiao, 2023. "Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert N. Fetcho & Baila S. Hall & David J. Estrin & Alexander P. Walsh & Peter J. Schuette & Jesse Kaminsky & Ashna Singh & Jacob Roshgodal & Charlotte C. Bavley & Viraj Nadkarni & Susan Antigua & Th, 2023. "Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Irene Serra & Julio Esparza & Laura Delgado & Cristina Martín-Monteagudo & Margalida Puigròs & Petar Podlesniy & Ramón Trullás & Marta Navarrete, 2022. "Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Nahoko Kuga & Ryota Nakayama & Shota Morikawa & Haruya Yagishita & Daichi Konno & Hiromi Shiozaki & Natsumi Honjoya & Yuji Ikegaya & Takuya Sasaki, 2023. "Hippocampal sharp wave ripples underlie stress susceptibility in male mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26968-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.