Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-26968-4
Download full text from publisher
References listed on IDEAS
- Rosemary C. Bagot & Eric M. Parise & Catherine J. Peña & Hong-Xing Zhang & Ian Maze & Dipesh Chaudhury & Brianna Persaud & Roger Cachope & Carlos A. Bolaños-Guzmán & Joseph F. Cheer & Karl Deisseroth , 2015. "Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
- Rosemary C. Bagot & Eric M. Parise & Catherine J. Peña & Hong-Xing Zhang & Ian Maze & Dipesh Chaudhury & Brianna Persaud & Roger Cachope & Carlos A. Bolaños-Guzmán & Joseph F. Cheer & Karl Deisseroth , 2015. "Correction: Corrigendum: Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression," Nature Communications, Nature, vol. 6(1), pages 1-1, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ya-Wei Ji & Zi-Lin Shen & Xue Zhang & Kairan Zhang & Tao Jia & Xiangying Xu & Huizhen Geng & Yu Han & Cui Yin & Jian-Jun Yang & Jun-Li Cao & Chunyi Zhou & Cheng Xiao, 2023. "Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Robert N. Fetcho & Baila S. Hall & David J. Estrin & Alexander P. Walsh & Peter J. Schuette & Jesse Kaminsky & Ashna Singh & Jacob Roshgodal & Charlotte C. Bavley & Viraj Nadkarni & Susan Antigua & Th, 2023. "Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Irene Serra & Julio Esparza & Laura Delgado & Cristina Martín-Monteagudo & Margalida Puigròs & Petar Podlesniy & Ramón Trullás & Marta Navarrete, 2022. "Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
- Nahoko Kuga & Ryota Nakayama & Shota Morikawa & Haruya Yagishita & Daichi Konno & Hiromi Shiozaki & Natsumi Honjoya & Yuji Ikegaya & Takuya Sasaki, 2023. "Hippocampal sharp wave ripples underlie stress susceptibility in male mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26968-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.