IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37968-x.html
   My bibliography  Save this article

Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice

Author

Listed:
  • Ya-Wei Ji

    (Xuzhou Medical University)

  • Zi-Lin Shen

    (Xuzhou Medical University)

  • Xue Zhang

    (Xuzhou Medical University)

  • Kairan Zhang

    (Xuzhou Medical University)

  • Tao Jia

    (Xuzhou Medical University)

  • Xiangying Xu

    (Xuzhou Medical University)

  • Huizhen Geng

    (Xuzhou Medical University)

  • Yu Han

    (Xuzhou Medical University)

  • Cui Yin

    (Xuzhou Medical University
    Xuzhou Medical University
    Xuzhou Medical University)

  • Jian-Jun Yang

    (The First Affiliated Hospital of Zhengzhou University)

  • Jun-Li Cao

    (Xuzhou Medical University
    Xuzhou Medical University
    Xuzhou Medical University)

  • Chunyi Zhou

    (Xuzhou Medical University
    Xuzhou Medical University
    Xuzhou Medical University)

  • Cheng Xiao

    (Xuzhou Medical University
    Xuzhou Medical University
    Xuzhou Medical University)

Abstract

Nucleus- and cell-specific interrogation of individual basal forebrain (BF) cholinergic circuits is crucial for refining targets to treat comorbid chronic pain-like and depression-like behaviour. As the ventral pallidum (VP) in the BF regulates pain perception and emotions, we aim to address the role of VP-derived cholinergic circuits in hyperalgesia and depression-like behaviour in chronic pain mouse model. In male mice, VP cholinergic neurons innervate local non-cholinergic neurons and modulate downstream basolateral amygdala (BLA) neurons through nicotinic acetylcholine receptors. These cholinergic circuits are mobilized by pain-like stimuli and become hyperactive during persistent pain. Acute stimulation of VP cholinergic neurons and the VP-BLA cholinergic projection reduces pain threshold in naïve mice whereas inhibition of the circuits elevated pain threshold in pain-like states. Multi-day repetitive modulation of the VP-BLA cholinergic pathway regulates depression-like behaviour in persistent pain. Therefore, VP-derived cholinergic circuits are implicated in comorbid hyperalgesia and depression-like behaviour in chronic pain mouse model.

Suggested Citation

  • Ya-Wei Ji & Zi-Lin Shen & Xue Zhang & Kairan Zhang & Tao Jia & Xiangying Xu & Huizhen Geng & Yu Han & Cui Yin & Jian-Jun Yang & Jun-Li Cao & Chunyi Zhou & Cheng Xiao, 2023. "Plasticity in ventral pallidal cholinergic neuron-derived circuits contributes to comorbid chronic pain-like and depression-like behaviour in male mice," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37968-x
    DOI: 10.1038/s41467-023-37968-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37968-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37968-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eun-Hwa Lee & Jin-Young Park & Hye-Jin Kwon & Pyung-Lim Han, 2021. "Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    2. Wei-Zhu Liu & Wen-Hua Zhang & Zhi-Heng Zheng & Jia-Xin Zou & Xiao-Xuan Liu & Shou-He Huang & Wen-Jie You & Ye He & Jun-Yu Zhang & Xiao-Dong Wang & Bing-Xing Pan, 2020. "Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    3. Tao Jia & Ying-Di Wang & Jing Chen & Xue Zhang & Jun-Li Cao & Cheng Xiao & Chunyi Zhou, 2022. "A nigro–subthalamo–parabrachial pathway modulates pain-like behaviors," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    4. Lauren Faget & Vivien Zell & Elizabeth Souter & Adam McPherson & Reed Ressler & Navarre Gutierrez-Reed & Ji Hoon Yoo & Davide Dulcis & Thomas S. Hnasko, 2018. "Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren-Wen Han & Zi-Yi Zhang & Chen Jiao & Ze-Yu Hu & Bing-Xing Pan, 2024. "Synergism between two BLA-to-BNST pathways for appropriate expression of anxiety-like behaviors in male mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Daniel G. Taub & Qiufen Jiang & Francesca Pietrafesa & Junfeng Su & Aloe Carroll & Caitlin Greene & Michael R. Blanchard & Aakanksha Jain & Mahmoud El-Rifai & Alexis Callen & Katherine Yager & Clara C, 2024. "The secondary somatosensory cortex gates mechanical and heat sensitivity," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Huiling Yu & Liping Chen & Huiyang Lei & Guilin Pi & Rui Xiong & Tao Jiang & Dongqin Wu & Fei Sun & Yang Gao & Yuanhao Li & Wenju Peng & Bingyu Huang & Guoda Song & Xin Wang & Jingru Lv & Zetao Jin & , 2022. "Infralimbic medial prefrontal cortex signalling to calbindin 1 positive neurons in posterior basolateral amygdala suppresses anxiety- and depression-like behaviours," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Li Shen & Guang-Wei Zhang & Can Tao & Michelle B. Seo & Nicole K. Zhang & Junxiang J. Huang & Li I. Zhang & Huizhong W. Tao, 2022. "A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37968-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.