IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms8062.html
   My bibliography  Save this article

Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression

Author

Listed:
  • Rosemary C. Bagot

    (Icahn School of Medicine at Mount Sinai)

  • Eric M. Parise

    (Florida State University)

  • Catherine J. Peña

    (Icahn School of Medicine at Mount Sinai)

  • Hong-Xing Zhang

    (Icahn School of Medicine at Mount Sinai)

  • Ian Maze

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Dipesh Chaudhury

    (Icahn School of Medicine at Mount Sinai)

  • Brianna Persaud

    (Icahn School of Medicine at Mount Sinai)

  • Roger Cachope

    (University of Maryland School of Medicine)

  • Carlos A. Bolaños-Guzmán

    (Florida State University)

  • Joseph F. Cheer

    (University of Maryland School of Medicine)

  • Karl Deisseroth

    (Stanford University)

  • Ming-Hu Han

    (Icahn School of Medicine at Mount Sinai
    Icahn School of Medicine at Mount Sinai)

  • Eric J. Nestler

    (Icahn School of Medicine at Mount Sinai)

Abstract

Enhanced glutamatergic transmission in the nucleus accumbens (NAc), a region critical for reward and motivation, has been implicated in the pathophysiology of depression; however, the afferent source of this increased glutamate tone is not known. The NAc receives glutamatergic inputs from the medial prefrontal cortex (mPFC), ventral hippocampus (vHIP) and basolateral amygdala (AMY). Here, we demonstrate that glutamatergic vHIP afferents to NAc regulate susceptibility to chronic social defeat stress (CSDS). We observe reduced activity in vHIP in mice resilient to CSDS. Furthermore, attenuation of vHIP-NAc transmission by optogenetic induction of long-term depression is pro-resilient, whereas acute enhancement of this input is pro-susceptible. This effect is specific to vHIP afferents to the NAc, as optogenetic stimulation of either mPFC or AMY afferents to the NAc is pro-resilient. These data indicate that vHIP afferents to NAc uniquely regulate susceptibility to CSDS, highlighting an important, novel circuit-specific mechanism in depression.

Suggested Citation

  • Rosemary C. Bagot & Eric M. Parise & Catherine J. Peña & Hong-Xing Zhang & Ian Maze & Dipesh Chaudhury & Brianna Persaud & Roger Cachope & Carlos A. Bolaños-Guzmán & Joseph F. Cheer & Karl Deisseroth , 2015. "Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8062
    DOI: 10.1038/ncomms8062
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms8062
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms8062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert N. Fetcho & Baila S. Hall & David J. Estrin & Alexander P. Walsh & Peter J. Schuette & Jesse Kaminsky & Ashna Singh & Jacob Roshgodal & Charlotte C. Bavley & Viraj Nadkarni & Susan Antigua & Th, 2023. "Regulation of social interaction in mice by a frontostriatal circuit modulated by established hierarchical relationships," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Eun-Hwa Lee & Jin-Young Park & Hye-Jin Kwon & Pyung-Lim Han, 2021. "Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Irene Serra & Julio Esparza & Laura Delgado & Cristina Martín-Monteagudo & Margalida Puigròs & Petar Podlesniy & Ramón Trullás & Marta Navarrete, 2022. "Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Nahoko Kuga & Ryota Nakayama & Shota Morikawa & Haruya Yagishita & Daichi Konno & Hiromi Shiozaki & Natsumi Honjoya & Yuji Ikegaya & Takuya Sasaki, 2023. "Hippocampal sharp wave ripples underlie stress susceptibility in male mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms8062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.