IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26847-y.html
   My bibliography  Save this article

Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype

Author

Listed:
  • Benjamin Kostiuk

    (University of Alberta)

  • Francis J. Santoriello

    (University of Colorado Denver Anschutz Medical Campus)

  • Laura Diaz-Satizabal

    (University of Alberta)

  • Fabiana Bisaro

    (The City College of New York)

  • Kyung-Jo Lee

    (The City College of New York)

  • Anna N. Dhody

    (The College of Physicians of Philadelphia)

  • Daniele Provenzano

    (University of Texas Rio Grande Valley, One West University Blvd)

  • Daniel Unterweger

    (Max-Planck Institute for Evolutionary Biology
    Kiel University)

  • Stefan Pukatzki

    (The City College of New York)

Abstract

The gram-negative bacterium Vibrio cholerae is the causative agent of the diarrhoeal disease cholera and is responsible for seven recorded pandemics. Several factors are postulated to have led to the decline of 6th pandemic classical strains and the rise of El Tor biotype V. cholerae, establishing the current 7th pandemic. We investigated the ability of classical V. cholerae of the 2nd and 6th pandemics to engage their type six secretion system (T6SS) in microbial competition against non-pandemic and 7th pandemic strains. We report that classical V. cholerae underwent sequential mutations in T6SS genetic determinants that initially exposed 2nd pandemic strains to microbial attack by non-pandemic strains and subsequently caused 6th pandemic strains to become vulnerable to El Tor biotype V. cholerae intraspecific competition. The chronology of these T6SS-debilitating mutations agrees with the decline of 6th pandemic classical strains and the emergence of 7th pandemic El Tor V. cholerae.

Suggested Citation

  • Benjamin Kostiuk & Francis J. Santoriello & Laura Diaz-Satizabal & Fabiana Bisaro & Kyung-Jo Lee & Anna N. Dhody & Daniele Provenzano & Daniel Unterweger & Stefan Pukatzki, 2021. "Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26847-y
    DOI: 10.1038/s41467-021-26847-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26847-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26847-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric Durand & Van Son Nguyen & Abdelrahim Zoued & Laureen Logger & Gérard Péhau-Arnaudet & Marie-Stéphanie Aschtgen & Silvia Spinelli & Aline Desmyter & Benjamin Bardiaux & Annick Dujeancourt & Alain , 2015. "Biogenesis and structure of a type VI secretion membrane core complex," Nature, Nature, vol. 523(7562), pages 555-560, July.
    2. Daniel Unterweger & Sarah T. Miyata & Verena Bachmann & Teresa M. Brooks & Travis Mullins & Benjamin Kostiuk & Daniele Provenzano & Stefan Pukatzki, 2014. "The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition," Nature Communications, Nature, vol. 5(1), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven J. Jensen & Bonnie J. Cuthbert & Fernando Garza-Sánchez & Colette C. Helou & Rodger Miranda & Celia W. Goulding & Christopher S. Hayes, 2024. "Advanced glycation end-product crosslinking activates a type VI secretion system phospholipase effector protein," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Selina Fecht & Patricia Paracuellos & Sujatha Subramoni & Casandra Ai Zhu Tan & Aravindan Ilangovan & Tiago R. D. Costa & Alain Filloux, 2024. "Functionality of chimeric TssA proteins in the type VI secretion system reveals sheath docking specificity within their N-terminal domains," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Thibault R. Bongiovanni & Casey J. Latario & Youn Cras & Evan Trus & Sophie Robitaille & Kerry Swartz & Danica Schmidtke & Maxence Vincent & Artemis Kosta & Jan Orth & Florian Stengel & Riccardo Pella, 2024. "Assembly of a unique membrane complex in type VI secretion systems of Bacteroidota," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26847-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.