IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48487-8.html
   My bibliography  Save this article

Functionality of chimeric TssA proteins in the type VI secretion system reveals sheath docking specificity within their N-terminal domains

Author

Listed:
  • Selina Fecht

    (Imperial College London)

  • Patricia Paracuellos

    (Imperial College London)

  • Sujatha Subramoni

    (Nanyang Technological University)

  • Casandra Ai Zhu Tan

    (Nanyang Technological University)

  • Aravindan Ilangovan

    (Queen Mary University of London)

  • Tiago R. D. Costa

    (Imperial College London)

  • Alain Filloux

    (Imperial College London
    Nanyang Technological University)

Abstract

The genome of Pseudomonas aeruginosa encodes three type VI secretion systems, each comprising a dozen distinct proteins, which deliver toxins upon T6SS sheath contraction. The least conserved T6SS component, TssA, has variations in size which influence domain organisation and structure. Here we show that the TssA Nt1 domain interacts directly with the sheath in a specific manner, while the C-terminus is essential for oligomerisation. We built chimeric TssA proteins by swapping C-termini and showed that these can be functional even when made of domains from different TssA sub-groups. Functional specificity requires the Nt1 domain, while the origin of the C-terminal domain is more permissive for T6SS function. We identify two regions in short TssA proteins, loop and hairpin, that contribute to sheath binding. We propose a docking mechanism of TssA proteins with the sheath, and a model for how sheath assembly is coordinated by TssA proteins from this position.

Suggested Citation

  • Selina Fecht & Patricia Paracuellos & Sujatha Subramoni & Casandra Ai Zhu Tan & Aravindan Ilangovan & Tiago R. D. Costa & Alain Filloux, 2024. "Functionality of chimeric TssA proteins in the type VI secretion system reveals sheath docking specificity within their N-terminal domains," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48487-8
    DOI: 10.1038/s41467-024-48487-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48487-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48487-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samuel R. Dix & Hayley J. Owen & Ruyue Sun & Asma Ahmad & Sravanthi Shastri & Helena L. Spiewak & Daniel J. Mosby & Matthew J. Harris & Sarah L. Batters & Thomas A. Brooker & Svetomir B. Tzokov & Svet, 2018. "Structural insights into the function of type VI secretion system TssA subunits," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    2. Abdelrahim Zoued & Eric Durand & Yannick R. Brunet & Silvia Spinelli & Badreddine Douzi & Mathilde Guzzo & Nicolas Flaugnatti & Pierre Legrand & Laure Journet & Rémi Fronzes & Tâm Mignot & Christian C, 2016. "Priming and polymerization of a bacterial contractile tail structure," Nature, Nature, vol. 531(7592), pages 59-63, March.
    3. Maria Silvina Stietz & Xiaoye Liang & Hao Li & Xinran Zhang & Tao G. Dong, 2020. "TssA–TssM–TagA interaction modulates type VI secretion system sheath-tube assembly in Vibrio cholerae," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Eric Durand & Van Son Nguyen & Abdelrahim Zoued & Laureen Logger & Gérard Péhau-Arnaudet & Marie-Stéphanie Aschtgen & Silvia Spinelli & Aline Desmyter & Benjamin Bardiaux & Annick Dujeancourt & Alain , 2015. "Biogenesis and structure of a type VI secretion membrane core complex," Nature, Nature, vol. 523(7562), pages 555-560, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Kostiuk & Francis J. Santoriello & Laura Diaz-Satizabal & Fabiana Bisaro & Kyung-Jo Lee & Anna N. Dhody & Daniele Provenzano & Daniel Unterweger & Stefan Pukatzki, 2021. "Type VI secretion system mutations reduced competitive fitness of classical Vibrio cholerae biotype," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Thibault R. Bongiovanni & Casey J. Latario & Youn Cras & Evan Trus & Sophie Robitaille & Kerry Swartz & Danica Schmidtke & Maxence Vincent & Artemis Kosta & Jan Orth & Florian Stengel & Riccardo Pella, 2024. "Assembly of a unique membrane complex in type VI secretion systems of Bacteroidota," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48487-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.