IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26549-5.html
   My bibliography  Save this article

Distinct methane-dependent biogeochemical states in Arctic seafloor gas hydrate mounds

Author

Listed:
  • Scott A. Klasek

    (Oregon State University
    University of Wyoming)

  • Wei-Li Hong

    (Stockholm University
    UiT The Arctic University of Norway
    Stockholm University)

  • Marta E. Torres

    (College of Earth, Ocean, and Atmospheric Sciences, Oregon State University)

  • Stella Ross

    (College of Earth, Ocean, and Atmospheric Sciences, Oregon State University)

  • Katelyn Hostetler

    (Oregon State University)

  • Alexey Portnov

    (UiT The Arctic University of Norway
    University of Texas Institute for Geophysics)

  • Friederike Gründger

    (UiT The Arctic University of Norway
    Arctic Research Centre, Aarhus University)

  • Frederick S. Colwell

    (Oregon State University
    College of Earth, Ocean, and Atmospheric Sciences, Oregon State University)

Abstract

Archaea mediating anaerobic methane oxidation are key in preventing methane produced in marine sediments from reaching the hydrosphere; however, a complete understanding of how microbial communities in natural settings respond to changes in the flux of methane remains largely uncharacterized. We investigate microbial communities in gas hydrate-bearing seafloor mounds at Storfjordrenna, offshore Svalbard in the high Arctic, where we identify distinct methane concentration profiles that include steady-state, recently-increasing subsurface diffusive flux, and active gas seepage. Populations of anaerobic methanotrophs and sulfate-reducing bacteria were highest at the seep site, while decreased community diversity was associated with a recent increase in methane influx. Despite high methane fluxes and methanotroph doubling times estimated at 5–9 months, microbial community responses were largely synchronous with the advancement of methane into shallower sediment horizons. Together, these provide a framework for interpreting subseafloor microbial responses to methane escape in a warming Arctic Ocean.

Suggested Citation

  • Scott A. Klasek & Wei-Li Hong & Marta E. Torres & Stella Ross & Katelyn Hostetler & Alexey Portnov & Friederike Gründger & Frederick S. Colwell, 2021. "Distinct methane-dependent biogeochemical states in Arctic seafloor gas hydrate mounds," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26549-5
    DOI: 10.1038/s41467-021-26549-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26549-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26549-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohamed F. Haroon & Shihu Hu & Ying Shi & Michael Imelfort & Jurg Keller & Philip Hugenholtz & Zhiguo Yuan & Gene W. Tyson, 2013. "Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage," Nature, Nature, vol. 500(7464), pages 567-570, August.
    2. Wei-Li Hong & Marta E Torres & JoLynn Carroll & Antoine Crémière & Giuliana Panieri & Haoyi Yao & Pavel Serov, 2017. "Erratum: Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming," Nature Communications, Nature, vol. 8(1), pages 1-1, December.
    3. Shawn E. McGlynn & Grayson L. Chadwick & Christopher P. Kempes & Victoria J. Orphan, 2015. "Single cell activity reveals direct electron transfer in methanotrophic consortia," Nature, Nature, vol. 526(7574), pages 531-535, October.
    4. Wei-Li Hong & Marta E. Torres & JoLynn Carroll & Antoine Crémière & Giuliana Panieri & Haoyi Yao & Pavel Serov, 2017. "Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming," Nature Communications, Nature, vol. 8(1), pages 1-14, August.
    5. Mohamed F. Haroon & Shihu Hu & Ying Shi & Michael Imelfort & Jurg Keller & Philip Hugenholtz & Zhiguo Yuan & Gene W. Tyson, 2013. "Erratum: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage," Nature, Nature, vol. 501(7468), pages 578-578, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaohong Zhang & Fangyuan Wang, 2021. "Different impacts of an electron shuttle on nitrate- and nitrite-dependent anaerobic oxidation of methane in paddy soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(5), pages 264-269.
    2. Heleen T. Ouboter & Rob Mesman & Tom Sleutels & Jelle Postma & Martijn Wissink & Mike S. M. Jetten & Annemiek Ter Heijne & Tom Berben & Cornelia U. Welte, 2024. "Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xueqin Zhang & Georgina H. Joyce & Andy O. Leu & Jing Zhao & Hesamoddin Rabiee & Bernardino Virdis & Gene W. Tyson & Zhiguo Yuan & Simon J. McIlroy & Shihu Hu, 2023. "Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Marie C. Schoelmerich & Lynn Ly & Jacob West-Roberts & Ling-Dong Shi & Cong Shen & Nikhil S. Malvankar & Najwa Taib & Simonetta Gribaldo & Ben J. Woodcroft & Christopher W. Schadt & Basem Al-Shayeb & , 2024. "Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. S. Emil Ruff & Pauline Humez & Isabella Hrabe Angelis & Muhe Diao & Michael Nightingale & Sara Cho & Liam Connors & Olukayode O. Kuloyo & Alan Seltzer & Samuel Bowman & Scott D. Wankel & Cynthia N. Mc, 2023. "Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Mengxiong Wu & Jie Li & Andy O. Leu & Dirk V. Erler & Terra Stark & Gene W. Tyson & Zhiguo Yuan & Simon J. McIlroy & Jianhua Guo, 2022. "Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Sina Schorn & Jon S. Graf & Sten Littmann & Philipp F. Hach & Gaute Lavik & Daan R. Speth & Carsten J. Schubert & Marcel M. M. Kuypers & Jana Milucka, 2024. "Persistent activity of aerobic methane-oxidizing bacteria in anoxic lake waters due to metabolic versatility," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Liang, Jianzhen & Feng, Jing-Chun & Chen, Xiao & Li, Cun & Zhang, Si, 2024. "Increasing temperature and sulfate enhances the efficiency of methane abatement in an anaerobic oxidation of methane bioreactor (AOMB) system," Applied Energy, Elsevier, vol. 362(C).
    10. Alicia M. Wilson & Andrew Osborne & Scott M. White, 2024. "Large-scale groundwater flow and sedimentary diagenesis in continental shelves influence marine chemical budgets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Marie C. Schoelmerich & Heleen T. Ouboter & Rohan Sachdeva & Petar I. Penev & Yuki Amano & Jacob West-Roberts & Cornelia U. Welte & Jillian F. Banfield, 2022. "A widespread group of large plasmids in methanotrophic Methanoperedens archaea," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Yue Zheng & Huan Wang & Yan Liu & Peiyu Liu & Baoli Zhu & Yanning Zheng & Jinhua Li & Ludmila Chistoserdova & Zhiyong Jason Ren & Feng Zhao, 2024. "Electrochemically coupled CH4 and CO2 consumption driven by microbial processes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Daniel S. Grégoire & Nikhil A. George & Laura A. Hug, 2023. "Microbial methane cycling in a landfill on a decadal time scale," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Aracely Zambrano-Romero & Dario X. Ramirez-Villacis & Gabriel Trueba & Reyes Sierra-Alvarez & Antonio Leon-Reyes & Paul Cardenas & Valeria Ochoa-Herrera, 2022. "Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    15. Iván Vargas-Cordero & Umberta Tinivella & Lucía Villar-Muñoz & Joaquim P. Bento, 2018. "High Gas Hydrate and Free Gas Concentrations: An Explanation for Seeps Offshore South Mocha Island," Energies, MDPI, vol. 11(11), pages 1-13, November.
    16. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Pilar C. Portela & Catharine C. Shipps & Cong Shen & Vishok Srikanth & Carlos A. Salgueiro & Nikhil S. Malvankar, 2024. "Widespread extracellular electron transfer pathways for charging microbial cytochrome OmcS nanowires via periplasmic cytochromes PpcABCDE," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Jung, Heejung & Kim, Danbee & Choi, Hyungmin & Lee, Changsoo, 2022. "A review of technologies for in-situ sulfide control in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26549-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.