IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v67y2021i5id579-2020-pse.html
   My bibliography  Save this article

Different impacts of an electron shuttle on nitrate- and nitrite-dependent anaerobic oxidation of methane in paddy soil

Author

Listed:
  • Yaohong Zhang

    (Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, P.R. China)

  • Fangyuan Wang

    (Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, P.R. China
    State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P.R. China)

Abstract

Quinones, redox-active functional groups in soil organic matter, can act as electron shuttles for microbial anaerobic transformation. Here, we used 13CH4 to trace 13C conversion (13C-CO2 + 13C-SOC) to investigate the influence of an artificial electron shuttle (anthraquinone-2,6-disulfonate, AQDS) on denitrifying anaerobic methane oxidation (DAMO) in paddy soil. The results showed that AQDS could act as the terminal electron acceptor for the anaerobic oxidation of methane (AOM) in the paddy field. Moreover, AQDS significantly enhanced nitrate-dependent AOM rates and the amount of 13C-CH4 assimilation to soil organic carbon (SOC), whereas it was remarkably reduced nitrite-dependent AOM rates and 13C assimilation. Ultimately, AQDS notably increased the total DAMO rates and 13C assimilation to SOC. However, the electron shuttle did not change the percentage of 13C-SOC in total 13C-CH4 conversion. These results suggest that electron shuttles in the natural organic matter might be able to offset methane emission by facilitating AOM coupled with the denitrification process.

Suggested Citation

  • Yaohong Zhang & Fangyuan Wang, 2021. "Different impacts of an electron shuttle on nitrate- and nitrite-dependent anaerobic oxidation of methane in paddy soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(5), pages 264-269.
  • Handle: RePEc:caa:jnlpse:v:67:y:2021:i:5:id:579-2020-pse
    DOI: 10.17221/579/2020-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/579/2020-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/579/2020-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/579/2020-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed F. Haroon & Shihu Hu & Ying Shi & Michael Imelfort & Jurg Keller & Philip Hugenholtz & Zhiguo Yuan & Gene W. Tyson, 2013. "Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage," Nature, Nature, vol. 500(7464), pages 567-570, August.
    2. Shawn E. McGlynn & Grayson L. Chadwick & Christopher P. Kempes & Victoria J. Orphan, 2015. "Single cell activity reveals direct electron transfer in methanotrophic consortia," Nature, Nature, vol. 526(7574), pages 531-535, October.
    3. Mujiyo Mujiyo & Bambang Hendro Sunarminto & Eko Hanudin & Jaka Widada & Jauhari Syamsiyah, 2017. "Methane production potential of soil profile in organic paddy field," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 12(4), pages 212-219.
    4. Mohamed F. Haroon & Shihu Hu & Ying Shi & Michael Imelfort & Jurg Keller & Philip Hugenholtz & Zhiguo Yuan & Gene W. Tyson, 2013. "Erratum: Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage," Nature, Nature, vol. 501(7468), pages 578-578, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott A. Klasek & Wei-Li Hong & Marta E. Torres & Stella Ross & Katelyn Hostetler & Alexey Portnov & Friederike Gründger & Frederick S. Colwell, 2021. "Distinct methane-dependent biogeochemical states in Arctic seafloor gas hydrate mounds," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Heleen T. Ouboter & Rob Mesman & Tom Sleutels & Jelle Postma & Martijn Wissink & Mike S. M. Jetten & Annemiek Ter Heijne & Tom Berben & Cornelia U. Welte, 2024. "Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Xueqin Zhang & Georgina H. Joyce & Andy O. Leu & Jing Zhao & Hesamoddin Rabiee & Bernardino Virdis & Gene W. Tyson & Zhiguo Yuan & Simon J. McIlroy & Shihu Hu, 2023. "Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Marie C. Schoelmerich & Lynn Ly & Jacob West-Roberts & Ling-Dong Shi & Cong Shen & Nikhil S. Malvankar & Najwa Taib & Simonetta Gribaldo & Ben J. Woodcroft & Christopher W. Schadt & Basem Al-Shayeb & , 2024. "Borg extrachromosomal elements of methane-oxidizing archaea have conserved and expressed genetic repertoires," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Marie C. Schoelmerich & Heleen T. Ouboter & Rohan Sachdeva & Petar I. Penev & Yuki Amano & Jacob West-Roberts & Cornelia U. Welte & Jillian F. Banfield, 2022. "A widespread group of large plasmids in methanotrophic Methanoperedens archaea," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Yue Zheng & Huan Wang & Yan Liu & Peiyu Liu & Baoli Zhu & Yanning Zheng & Jinhua Li & Ludmila Chistoserdova & Zhiyong Jason Ren & Feng Zhao, 2024. "Electrochemically coupled CH4 and CO2 consumption driven by microbial processes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. S. Emil Ruff & Pauline Humez & Isabella Hrabe Angelis & Muhe Diao & Michael Nightingale & Sara Cho & Liam Connors & Olukayode O. Kuloyo & Alan Seltzer & Samuel Bowman & Scott D. Wankel & Cynthia N. Mc, 2023. "Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Mengxiong Wu & Jie Li & Andy O. Leu & Dirk V. Erler & Terra Stark & Gene W. Tyson & Zhiguo Yuan & Simon J. McIlroy & Jianhua Guo, 2022. "Anaerobic oxidation of propane coupled to nitrate reduction by a lineage within the class Symbiobacteriia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Sina Schorn & Jon S. Graf & Sten Littmann & Philipp F. Hach & Gaute Lavik & Daan R. Speth & Carsten J. Schubert & Marcel M. M. Kuypers & Jana Milucka, 2024. "Persistent activity of aerobic methane-oxidizing bacteria in anoxic lake waters due to metabolic versatility," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Daniel S. Grégoire & Nikhil A. George & Laura A. Hug, 2023. "Microbial methane cycling in a landfill on a decadal time scale," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Aracely Zambrano-Romero & Dario X. Ramirez-Villacis & Gabriel Trueba & Reyes Sierra-Alvarez & Antonio Leon-Reyes & Paul Cardenas & Valeria Ochoa-Herrera, 2022. "Dynamics of Microbial Communities during the Removal of Copper and Zinc in a Sulfate-Reducing Bioreactor with a Limestone Pre-Column System," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    13. Yuhan Zhang & Yongbin Wang & Zhibin Chen & Chengzhi Hu & Jiuhui Qu, 2024. "Recovering nutrients and unblocking the cake layer of an electrochemical anaerobic membrane bioreactor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Pilar C. Portela & Catharine C. Shipps & Cong Shen & Vishok Srikanth & Carlos A. Salgueiro & Nikhil S. Malvankar, 2024. "Widespread extracellular electron transfer pathways for charging microbial cytochrome OmcS nanowires via periplasmic cytochromes PpcABCDE," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Jung, Heejung & Kim, Danbee & Choi, Hyungmin & Lee, Changsoo, 2022. "A review of technologies for in-situ sulfide control in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    19. Yan, Yixin & Yan, Miao & Ravenni, Giulia & Angelidaki, Irini & Fu, Dafang & Fotidis, Ioannis A., 2022. "Biochar enhanced bioaugmentation provides long-term tolerance under increasing ammonia toxicity in continuous biogas reactors," Renewable Energy, Elsevier, vol. 195(C), pages 590-597.
    20. Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:67:y:2021:i:5:id:579-2020-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.