IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26495-2.html
   My bibliography  Save this article

The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation

Author

Listed:
  • Vera Vorstandlechner

    (Medical University of Vienna
    Aposcience AG (FN 308089y)
    Medical University of Vienna)

  • Maria Laggner

    (Medical University of Vienna
    Aposcience AG (FN 308089y))

  • Dragan Copic

    (Medical University of Vienna
    Aposcience AG (FN 308089y))

  • Katharina Klas

    (Medical University of Vienna
    Aposcience AG (FN 308089y))

  • Martin Direder

    (Medical University of Vienna
    Aposcience AG (FN 308089y))

  • Yiyan Chen

    (Medical University of Vienna
    University of Applied Sciences)

  • Bahar Golabi

    (Medical University of Vienna)

  • Werner Haslik

    (Medical University of Vienna)

  • Christine Radtke

    (Medical University of Vienna)

  • Erwin Tschachler

    (Medical University of Vienna)

  • Konrad Hötzenecker

    (Medical University of Vienna)

  • Hendrik Jan Ankersmit

    (Medical University of Vienna
    Aposcience AG (FN 308089y))

  • Michael Mildner

    (Medical University of Vienna)

Abstract

Despite recent advances in understanding skin scarring, mechanisms triggering hypertrophic scar formation are still poorly understood. In the present study, we investigate mature human hypertrophic scars and developing scars in mice at single cell resolution. Compared to normal skin, we find significant differences in gene expression in most cell types present in scar tissue. Fibroblasts show the most prominent alterations in gene expression, displaying a distinct fibrotic signature. By comparing genes upregulated in murine fibroblasts during scar development with genes highly expressed in mature human hypertrophic scars, we identify a group of serine proteases, tentatively involved in scar formation. Two of them, dipeptidyl-peptidase 4 (DPP4) and urokinase (PLAU), are further analyzed in functional assays, revealing a role in TGFβ1-mediated myofibroblast differentiation and over-production of components of the extracellular matrix in vitro. Topical treatment with inhibitors of DPP4 and PLAU during scar formation in vivo shows anti-fibrotic activity and improvement of scar quality, most prominently after application of the PLAU inhibitor BC-11. In this study, we delineate the genetic landscape of hypertrophic scars and present insights into mechanisms involved in hypertrophic scar formation. Our data suggest the use of serine protease inhibitors for the treatment of skin fibrosis.

Suggested Citation

  • Vera Vorstandlechner & Maria Laggner & Dragan Copic & Katharina Klas & Martin Direder & Yiyan Chen & Bahar Golabi & Werner Haslik & Christine Radtke & Erwin Tschachler & Konrad Hötzenecker & Hendrik J, 2021. "The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26495-2
    DOI: 10.1038/s41467-021-26495-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26495-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26495-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christian F. Guerrero-Juarez & Priya H. Dedhia & Suoqin Jin & Rolando Ruiz-Vega & Dennis Ma & Yuchen Liu & Kosuke Yamaga & Olga Shestova & Denise L. Gay & Zaixin Yang & Kai Kessenbrock & Qing Nie & Wa, 2019. "Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    2. Salah Mahmoudi & Elena Mancini & Lucy Xu & Alessandra Moore & Fereshteh Jahanbani & Katja Hebestreit & Rajini Srinivasan & Xiyan Li & Keerthana Devarajan & Laurie Prélot & Cheen Euong Ang & Yohei Shib, 2019. "Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing," Nature, Nature, vol. 574(7779), pages 553-558, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shruthi Kalgudde Gopal & Ruoxuan Dai & Ania Maria Stefanska & Meshal Ansari & Jiakuan Zhao & Pushkar Ramesh & Johannes W. Bagnoli & Donovan Correa-Gallegos & Yue Lin & Simon Christ & Ilias Angelidis &, 2023. "Wound infiltrating adipocytes are not myofibroblasts," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Urban Lendahl & Lars Muhl & Christer Betsholtz, 2022. "Identification, discrimination and heterogeneity of fibroblasts," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Maria A. Missinato & Sean Murphy & Michaela Lynott & Michael S. Yu & Anaïs Kervadec & Yu-Ling Chang & Suraj Kannan & Mafalda Loreti & Christopher Lee & Prashila Amatya & Hiroshi Tanaka & Chun-Teng Hua, 2023. "Conserved transcription factors promote cell fate stability and restrict reprogramming potential in differentiated cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Meiling Zheng & Zhi Hu & Xiaole Mei & Lianlian Ouyang & Yang Song & Wenhui Zhou & Yi Kong & Ruifang Wu & Shijia Rao & Hai Long & Wei Shi & Hui Jing & Shuang Lu & Haijing Wu & Sujie Jia & Qianjin Lu & , 2022. "Single-cell sequencing shows cellular heterogeneity of cutaneous lesions in lupus erythematosus," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Steven Andrew Baker & Shirley Kwok & Gerald J Berry & Thomas J Montine, 2021. "Angiotensin-converting enzyme 2 (ACE2) expression increases with age in patients requiring mechanical ventilation," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-17, February.
    6. Katarzyna M. Sitnik & Fran Krstanović & Natascha Gödecke & Ulfert Rand & Tobias Kubsch & Henrike Maaß & Yeonsu Kim & Ilija Brizić & Luka Čičin-Šain, 2023. "Fibroblasts are a site of murine cytomegalovirus lytic replication and Stat1-dependent latent persistence in vivo," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Francesco Panariello & Onelia Gagliano & Camilla Luni & Antonio Grimaldi & Silvia Angiolillo & Wei Qin & Anna Manfredi & Patrizia Annunziata & Shaked Slovin & Lorenzo Vaccaro & Sara Riccardo & Valenti, 2023. "Cellular population dynamics shape the route to human pluripotency," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Fei Pei & Li Ma & Junjun Jing & Jifan Feng & Yuan Yuan & Tingwei Guo & Xia Han & Thach-Vu Ho & Jie Lei & Jinzhi He & Mingyi Zhang & Jian-Fu Chen & Yang Chai, 2023. "Sensory nerve niche regulates mesenchymal stem cell homeostasis via FGF/mTOR/autophagy axis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Ruiye Bi & Qing Yin & Haohan Li & Xianni Yang & Yiru Wang & Qianli Li & Han Fang & Peiran Li & Ping Lyu & Yi Fan & Binbin Ying & Songsong Zhu, 2023. "A single-cell transcriptional atlas reveals resident progenitor cell niche functions in TMJ disc development and injury," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Xin Li & Bairu Li & Shaobin Gu & Xinyue Pang & Patrick Mason & Jiangfeng Yuan & Jingyu Jia & Jiaju Sun & Chunyan Zhao & Robert Henry, 2024. "Single-cell and spatial RNA sequencing reveal the spatiotemporal trajectories of fruit senescence," Nature Communications, Nature, vol. 15(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26495-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.