IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26203-0.html
   My bibliography  Save this article

Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division

Author

Listed:
  • Zhongxing Sun

    (Zhejiang University)

  • Yin Tang

    (Zhejiang University)

  • Yanjun Zhang

    (Zhejiang University)

  • Yuan Fang

    (Zhejiang University)

  • Junqi Jia

    (Zhejiang University)

  • Weiwu Zeng

    (Zhejiang University)

  • Dong Fang

    (Zhejiang University
    The Second Affiliated Hospital, Zhejiang University School of Medicine)

Abstract

Wnt signaling usually functions through a spatial gradient. Localized Wnt3a signaling can induce the asymmetric division of mouse embryonic stem cells, where proximal daughter cells maintain self-renewal and distal daughter cells acquire hallmarks of differentiation. Here, we develop an approach, same cell epigenome and transcriptome sequencing, to jointly profile the epigenome and transcriptome in the same single cell. Utilizing this method, we profiled H3K27me3 and H3K4me3 levels along with gene expression in mouse embryonic stem cells with localized Wnt3a signaling, revealing the cell type-specific maps of the epigenome and transcriptome in divided daughter cells. H3K27me3, but not H3K4me3, is correlated with gene expression changes during asymmetric cell division. Furthermore, cell clusters identified by H3K27me3 recapitulate the corresponding clusters defined by gene expression. Our study provides a convenient method to jointly profile the epigenome and transcriptome in the same cell and reveals mechanistic insights into the gene regulatory programs that maintain and reset stem cell fate during differentiation.

Suggested Citation

  • Zhongxing Sun & Yin Tang & Yanjun Zhang & Yuan Fang & Junqi Jia & Weiwu Zeng & Dong Fang, 2021. "Joint single-cell multiomic analysis in Wnt3a induced asymmetric stem cell division," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26203-0
    DOI: 10.1038/s41467-021-26203-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26203-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26203-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian Chambers & Jose Silva & Douglas Colby & Jennifer Nichols & Bianca Nijmeijer & Morag Robertson & Jan Vrana & Ken Jones & Lars Grotewold & Austin Smith, 2007. "Nanog safeguards pluripotency and mediates germline development," Nature, Nature, vol. 450(7173), pages 1230-1234, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sivakamasundari Vijayakumar & Roberta Sala & Gugene Kang & Angela Chen & Michelle Ann Pablo & Abidemi Ismail Adebayo & Andrea Cipriano & Jonas L. Fowler & Danielle L. Gomes & Lay Teng Ang & Kyle M. Lo, 2023. "Monolayer platform to generate and purify primordial germ-like cells in vitro provides insights into human germline specification," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    2. Rohith Palli & Mukta G Palshikar & Juilee Thakar, 2019. "Executable pathway analysis using ensemble discrete-state modeling for large-scale data," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-21, September.
    3. Najme Khorasani & Mehdi Sadeghi & Abbas Nowzari-Dalini, 2020. "A computational model of stem cell molecular mechanism to maintain tissue homeostasis," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-25, July.
    4. Nicolas Allègre & Sabine Chauveau & Cynthia Dennis & Yoan Renaud & Dimitri Meistermann & Lorena Valverde Estrella & Pierre Pouchin & Michel Cohen-Tannoudji & Laurent David & Claire Chazaud, 2022. "NANOG initiates epiblast fate through the coordination of pluripotency genes expression," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Gemma Noviello & Rutger A. F. Gjaltema & Edda G. Schulz, 2023. "CasTuner is a degron and CRISPR/Cas-based toolkit for analog tuning of endogenous gene expression," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Peter D Tonge & Victor Olariu & Daniel Coca & Visakan Kadirkamanathan & Kelly E Burrell & Stephen A Billings & Peter W Andrews, 2010. "Prepatterning in the Stem Cell Compartment," PLOS ONE, Public Library of Science, vol. 5(5), pages 1-10, May.
    7. Suzanne Gaudet & Sabrina L Spencer & William W Chen & Peter K Sorger, 2012. "Exploring the Contextual Sensitivity of Factors that Determine Cell-to-Cell Variability in Receptor-Mediated Apoptosis," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    8. Colin T Maguire & Bradley L Demarest & Jonathon T Hill & James D Palmer & Arthur R Brothman & H Joseph Yost & Maureen L Condic, 2013. "Genome-Wide Analysis Reveals the Unique Stem Cell Identity of Human Amniocytes," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-16, January.
    9. Margaret J Tse & Brian K Chu & Cameron P Gallivan & Elizabeth L Read, 2018. "Rare-event sampling of epigenetic landscapes and phenotype transitions," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-28, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26203-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.