IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26202-1.html
   My bibliography  Save this article

Learning non-stationary Langevin dynamics from stochastic observations of latent trajectories

Author

Listed:
  • Mikhail Genkin

    (Cold Spring Harbor Laboratory)

  • Owen Hughes

    (University of Michigan)

  • Tatiana A. Engel

    (Cold Spring Harbor Laboratory)

Abstract

Many complex systems operating far from the equilibrium exhibit stochastic dynamics that can be described by a Langevin equation. Inferring Langevin equations from data can reveal how transient dynamics of such systems give rise to their function. However, dynamics are often inaccessible directly and can be only gleaned through a stochastic observation process, which makes the inference challenging. Here we present a non-parametric framework for inferring the Langevin equation, which explicitly models the stochastic observation process and non-stationary latent dynamics. The framework accounts for the non-equilibrium initial and final states of the observed system and for the possibility that the system’s dynamics define the duration of observations. Omitting any of these non-stationary components results in incorrect inference, in which erroneous features arise in the dynamics due to non-stationary data distribution. We illustrate the framework using models of neural dynamics underlying decision making in the brain.

Suggested Citation

  • Mikhail Genkin & Owen Hughes & Tatiana A. Engel, 2021. "Learning non-stationary Langevin dynamics from stochastic observations of latent trajectories," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26202-1
    DOI: 10.1038/s41467-021-26202-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26202-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26202-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chandramouli Chandrasekaran & Diogo Peixoto & William T. Newsome & Krishna V. Shenoy, 2017. "Laminar differences in decision-related neural activity in dorsal premotor cortex," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
    2. Josef Ladenbauer & Sam McKenzie & Daniel Fine English & Olivier Hagens & Srdjan Ostojic, 2019. "Inferring and validating mechanistic models of neural microcircuits based on spike-train data," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    3. Postnikov, Eugene B. & Sokolov, Igor M., 2019. "Reconstruction of substrate’s diffusion landscape by the wavelet analysis of single particle diffusion tracks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    4. Bryan C. Daniels & Ilya Nemenman, 2015. "Automated adaptive inference of phenomenological dynamical models," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    2. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Khalin, Andrey A. & Postnikov, Eugene B., 2020. "A wavelet-based approach to revealing the Tweedie distribution type in sparse data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. Wei, Baolei, 2022. "Sparse dynamical system identification with simultaneous structural parameters and initial condition estimation," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    5. Protachevicz, Paulo R. & Batista, Antonio M. & Caldas, Iberê L. & Baptista, Murilo S., 2024. "Analytical solutions for the short-term plasticity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Fernández de la Mata, Félix & Gijón, Alfonso & Molina-Solana, Miguel & Gómez-Romero, Juan, 2023. "Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Charles D. Brummitt & Andres Gomez-Lievano & Ricardo Hausmann & Matthew H. Bonds, 2018. "Machine-learned patterns suggest that diversification drives economic development," Papers 1812.03534, arXiv.org.
    8. Aguilar-Canto, Fernando Javier & Brito-Loeza, Carlos & Calvo, Hiram, 2024. "Model discovery of compartmental models with Graph-Supported Neural Networks," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    9. Zhao Chen & Yang Liu & Hao Sun, 2021. "Physics-informed learning of governing equations from scarce data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26202-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.